重复使用本文是根据创意共享属性 - 非商业 - 诺迪维斯(CC BY-NC-ND)许可证的条款分发的。此许可只允许您下载此工作并与他人共享,只要您归功于作者,但是您不能以任何方式更改文章或商业使用。此处的更多信息和许可证的完整条款:https://creativecommons.org/licenses/
印度科学技术部 (DST) 纳米和先进材料司 (NAMD) 与 JNCASR 合作,帮助印度研究人员和科学家利用德国 DESY 的 PETRA III 全球同步加速器设施应对关键科学挑战。该计划旨在促进印度科学家与 DESY 之间的合作。作为该计划的一部分,研讨会将以讲座的形式介绍 DESY 同步加速器设施的基本原理及其多种应用,目的是吸引新用户有效利用这些先进的大规模研究资源。
– 近期物理学研究最令人着迷的方面之一是人们熟悉的光学定律逐渐扩展到极高频的 X 射线,直到现在,光领域中几乎没有一种现象在 X 射线领域找不到平行。反射、折射、漫散射、偏振、衍射、发射和吸收光谱、光电效应,光的所有基本特性都被发现也是 X 射线的特性……
- 自然资源稀缺 - 可用土地较少,占全国总面积不到 30% - 人口密度高,每平方公里 516 人,仅韩国就有 5200 万人。 - 制造业占国民生产总值的比重较大,为 28.8%。 - 因此,研发是韩国工业生产的关键支撑
通过广泛部署整个(网格)和中级(车辆)尺度的储能技术,可以实现向较小化石燃料依赖化石燃料依赖能源经济的过渡。鉴于其效率和多功能性,目前正在考虑使用可充电电池,这些电池面临着不同的技术要求集(例如,在成本和寿命方面),与它们在便携式电子产品中的使用相比。在全球范围内正在研究研究,以改善当前可用的电池化学,例如锂离子,同时在成本和可持续性方面寻找具有高能量密度和/或优势的新概念。电池本质上复杂的设备,1个掌握材料科学,尤其是特征技术,对于在两个研究方向上取得进步至关重要。测量值(在电池内部)或操作数(在细胞功能期间进行)最近在光谱/空间分辨率方面提高并改善了无数技术的频谱/空间分辨率,包括差异和广泛的镜头和成像技术(甚至是其组合)。不同的长度尺度需要探测:从°A到Nm的表面/接口,以及从数十nm到m m的电极材料,以达到完整电极的MM和完整的
通过广泛部署整个(网格)和中级(车辆)尺度的储能技术,可以实现向较小化石燃料依赖化石燃料依赖能源经济的过渡。鉴于其效率和多功能性,目前正在考虑使用可充电电池,这些电池面临着不同的技术要求集(例如,在成本和寿命方面),与它们在便携式电子产品中的使用相比。在全球范围内正在研究研究,以改善当前可用的电池化学,例如锂离子,同时在成本和可持续性方面寻找具有高能量密度和/或优势的新概念。电池本质上复杂的设备,1个掌握材料科学,尤其是特征技术,对于在两个研究方向上取得进步至关重要。测量值(在电池内部)或操作数(在细胞功能期间进行)最近在光谱/空间分辨率方面提高并改善了无数技术的频谱/空间分辨率,包括差异和广泛的镜头和成像技术(甚至是其组合)。不同的长度尺度需要探测:从°A到Nm的表面/接口,以及从数十nm到m m的电极材料,以达到完整电极的MM和完整的
研究需求和科学愿景” Yu-Chen Karen Chen- Wiegart、Iradwikanari Waluyo、Andrew Kiss、Stuart Campbell、Lin Yang、Eric Dooryhee、Jason R. Trelewicz、Yiyang Li、Bruce Gates、Mark Rivers、Kevin G. Yager 同步辐射新闻 (2020) DOI:10.1080/08940886.2020.1701380
科学技术学院的卡梅利诺大学,通过麦当娜·德尔·普里索(Madonna Delle Priso)9,62032卡梅利诺(Camerino),MC,意大利。e-mail: roberto.gunnella@unicam.it B Department of Physical and Chemical Sciences (DSFC), University of L'Aquila Studies, Via Vetoio 10, 67100 L'Aquila, Italy C Institute of Structure of the Matter-Cnr (ISM-CNR), S.S. 14, km 163.5, 34149 Trieste, Italy d faculty of applied physics and数学和高级材料中心,Gdansk技术大学,UL。narutowicza 11/12,80-233 GDANSK,波兰,波兰和物理系科学技术部拉合尔大学拉合尔大学,巴基斯坦Jauharabad校园,巴基斯坦F CN-Spin us l'aquila,Via Vetoio 10,67100 l'aquila via vetoio l'aquila,意大利vetoio 10,67100 l'aquila,意大利g iffn-ifnyaly g infn-g infn-sez。Perugia,通过意大利Pascoli Perugia†电子补充信息(ESI)。参见doi:https://doi.org/ 10.1039/d2cp04586a
由于自旋极化受 Heusler 合金元素组成的影响,因此表征和优化 Heusler 合金的原子组成以实现最高自旋极化非常重要。但目前用于确定半金属自旋极化的方法要么耗时,要么仅提供间接测量。
在充电/放电过程中锂电池电极的结构和电子演化的研究对于了解LI的存储/释放机制至关重要,并优化了这些材料,以实现高性能和循环性。在过去的20年中,在过去的20年中,已经开发出了几种原位和现代技术,例如X射线衍射XRD,1-11 X射线吸收光谱XAS XAS,12-15和Mössbauer,Mössbauer,16 Raman,ir和NMR 17,18 Specopies已开发出来。对电池材料的原位评估,即在封闭的电化学电池内观察,带来在线信息,并消除了通过环境气氛操纵高反应性粉末的风险。它允许研究复杂的反应机制,并证明由于电极s内的结构和电子过渡而导致的各种化学系统中的电压 - 组合物非常令人满意。可以在标准实验室衍射仪和同步加速器源设备中进行原位XRD研究,该设施可提供比常规X射线管所输送的光子量高几个数量级的X射线光束。到此为止,已经设计了几种用于转移或传输几何形状的电化学细胞。在标准X射线衍射仪中,高质量位置敏感探测器的最新开发使得在实验室中更容易使用此类技术。使用带状结构计算和数据模拟的最新方法在允许对电化学锂插入/提取过程中的化学键进行精确分析方面非常成功。在要研究的材料方面非常普遍,最近在伸展的X射线吸收膜结构Exafs和X射线吸收接近边缘结构Xanes Xanes Xanes模式中,最近在延伸的X射线吸收膜结构中广泛执行了原位XAS的结构变化和电子传递现象。例如,尽管信号的EXAFS部分提供了有关其自身吸收原子选择的近距离环境的直接结构信息,但可以将光谱的XANES部分大致看作是给定原子的空电子状态的图片,并允许在静脉内和反流中监测这些水平的收费过程。19此外,同步设施中弯曲的单晶的开发和使用分散X射线吸收结构以及单色QuickXAS快速旋转的可能性为研究的新方法铺平了道路,以研究对电池材料的研究。使用非常短的收购时间的可能性,通常是XRD和XAS几秒钟的顺序,确实允许我们投资 -