合成微生物群落(Syncom)生物传感器是一种有前途的技术,用于检测和响应环境线索和靶分子。Syncom生物传感器使用工程的微生物来创建一个更复杂和多样化的传感系统,从而使它们能够以增强的灵敏度和准确性对刺激做出反应。在这里,我们给出了Syncom生物传感器的定义,超越了他们的建筑工作,并讨论了当前的生物传感技术。我们还强调了开发和优化Syncom生物传感器以及在农业和食品经营中的潜在应用,生物治疗发展,家庭感应,城市和环境监测以及One Health Foundation的挑战和未来。我们认为,Syncom生物传感器可以实时和遥控的方式使用,以感知不断动态的环境的混乱。
合成社区的设计和使用,是散布微生物群落内部以及这些社区及其寄主之间复杂相互作用的最有希望的策略之一。与自然社区相比,这些简化的联盟为研究生态相互作用的范围提供了机会,并促进了可重复性并促进跨学科科学。但是,Syncom方法的有效实施需要有关这些模型系统的开发和应用的几个重要考虑因素。在临床,农业或环境环境中设计和部署联合体时,也有新兴的道德考虑。在这里,我们概述了当前在开发,实施和评估不同系统中的触体的最佳实践,包括关注Syncom研究的重要道德考虑。
微生物和动物具有共生关系,极大地影响了营养吸收和动物健康。可以使用称为合成群落的微生物或syncoms的微生物进行研究。synomcs用于包括农业动物在内的许多不同动物宿主中,以研究与营养物质的微生物相互作用,以及它们如何影响AN-IMAL健康。最常见的宿主聚焦在旁糖中目前是小鼠和人类,从基本的机械研究到转化疾病模型和实时生物治疗产品(LBP)作为治疗方法。我们讨论了基础研究模型中使用的串触,以及对人类和动物健康和营养的结果。讨论了串联的翻译用例,其次是LBP,尤其是在农业的背景下。Syncom仍然面临挑战,例如可重复性和污染风险的标准化。但是,联合性的未来是充满希望的,尤其是在基因组引导的Syncom设计和基于自定义Syncom治疗的领域。
合资◼Kesselring网站运营 - 纽约州CH2M Hill B&W West Valley,LLC。- NY◼Fluor -Bwxt Portsmouth,LLC。- 哦,四河核合伙,有限责任公司。- KY◼海军反应堆设施-ID◼Battelle Energy Alliance,LLC。- id lawrence Livermore国家安全有限责任公司。-Ca◼ut -Battelle,LLC。- TN◼iSotek Systems,LLC。- TN◼萨凡纳河任务完成-SC◼SC◼Syncom Space Services,LLS(S3) - MS,LA newport News News New News Bwxt -Los Alamos,LLC。(n3b)-nm
当今的卫星。RCA 为海军研究了这个问题,该项目涉及使用通信卫星将电视信号从地面站广播到飞机,然后广播到家庭接收设备。见图 2。表 I 显示了考虑用于此计划的不同卫星的下行链路分析。早期卫星(如 Early Bird 和 Syncom)使用的视频带宽的可用帧速率表明,未来需要更高的帧速率才能提供传统的电视图像。东京奥运会期间展示了通过卫星进行的实时跨太平洋电视,图像质量良好。然而,它需要特殊的接收设备和 85 英尺的碟形天线来提高 Syneom 的低发射功率和天线增益,并使这一壮举成为可能。通过使用飞机进行中继,确定即使使用需要 200°K 接收器噪声温度的非常特殊的接收器,物理限制也会阻止等效天线增益。因此,
当今的卫星。RCA 为海军研究了这个问题,该项目涉及使用通信卫星将电视信号从地面站广播到飞机,然后广播到家庭接收装置。见图 2。表 I 显示了考虑用于此计划的不同卫星的下行链路分析。早期卫星(如 Early Bird 和 Syncom)使用的视频带宽的可用帧速率表明,未来需要更高的帧速率才能提供传统的电视图像。东京奥运会期间展示了通过卫星进行的实时跨太平洋电视,图像质量良好。然而,它需要特殊的接收设备和 85 英尺的碟形天线来提高 Syneom 的低发射功率和天线增益,并使这一壮举成为可能。通过使用飞机进行中继,确定“物理限制将阻止等效天线增益,即使使用需要 200°K 接收器噪声温度的非常特殊的接收器也是如此。因此,
自然生态系统藏有大量的分类学微生物,这对植物生长和健康很重要。土壤微生物及其复杂的相互作用的大量多样性使确定对生命支持功能重要的主要参与者可以为植物提供重要的挑战,包括增强对(a)生物应激因素的耐受性。设计简化的微生物合成群落(Syncoms)有助于降低这种复杂性,从而揭示特定微生物组功能的分子和化学基础和相互作用。尽管已经成功地使用了Syncom来剖析微生物相互作用或再现微生物组相关的表型,但这些社区的组装和重建通常是基于通用的丰度模式或分类的认同,并共同出现的,但仅由功能特征提供了很少的信息。在这里,我们回顾了有关设计功能性阴谋的最新研究,以揭示共同的原理并讨论社区设计的多维方法。我们提出了一种基于与微生物菌株的高通量实验测定和其功能能力的计算基因组分析的集成,以定制功能性触体设计的策略。
自然生态系统藏有大量的分类学微生物,这对植物生长和健康很重要。土壤微生物及其复杂的相互作用的大量多样性使确定对生命支持功能重要的主要参与者可以为植物提供重要的挑战,包括增强对(a)生物应激因素的耐受性。设计简化的微生物合成群落(Syncoms)有助于降低这种复杂性,从而揭示特定微生物组功能的分子和化学基础和相互作用。尽管已经成功地使用了Syncom来剖析微生物相互作用或再现微生物组相关的表型,但这些社区的组装和重建通常是基于通用的丰度模式或分类的认同,并共同出现的,但仅由功能特征提供了很少的信息。在这里,我们回顾了有关设计功能性阴谋的最新研究,以揭示共同的原理并讨论社区设计的多维方法。我们提出了一种基于与微生物菌株的高通量实验测定和其功能能力的计算基因组分析的集成,以定制功能性触体设计的策略。
微生物接种是一种关键的策略,在有益的微生物和植物之间建立了共生关系,从而增强了营养的吸收,增强对环境压力源的弹性,并最终促进更健康,更生产的植物生长。然而,尽管被广泛承认接种剂的有利作用,但接种对根际微生物组复杂相互作用的确切和细微影响仍然显着尚未得到充分兴奋。本研究探讨了细菌接种对土壤特性,植物生长和根际微生物组的影响。通过使用各种细菌菌株和合成群落(Syncom)作为普通豆类植物中的接种剂,通过16 s rRNA及其基因测序评估了根际的细菌和真菌群落。同时评估了土壤化学参数,植物特征和基因表达。研究结果表明,细菌接种通常降低了pH和V%,而在根际中增加了H + Al和m%。它还降低了与排毒,光合作用和防御机制相关的植物中的基因表达,同时增强了根际细菌多样性,有可能使植物健康受益。特异性细菌菌株对根际微生物组的组装产生了不同的影响,主要影响根际细菌而不是真菌,从而间接影响了土壤条件和植物。值得注意的是,Paenibacillus polymyxa接种改善了植物氮(提高5.2%)和铁水平(提高28.1%),而蜡状芽孢杆菌提高了霉菌性率(70%)。此外,接种导致根际内网络相互作用的复杂性增加(约15%),可能会影响植物健康。总体而言,这些发现突出了将细菌引入根际,增强营养物的可用性,微生物多样性并促进有益的植物 - 微生物相互作用的重大影响。