syngo .CT Dual Energy 包括单能、最佳对比度和 syngo .CT DE Rho/Z syngo .via OpenApps 尚未在所有国家/地区上市。由于监管原因,无法保证其未来可用性。请联系您当地的西门子医疗组织以获取更多信息。交互式光谱成像允许在 syngo MM Reading 中直接更改单能 Plus keV 级别,以及可视化不可编辑的碘图、混合和虚拟未增强图像 (VNC)。自动和标准化重建;一键分割心脏、肺、主动脉;解剖范围预设;AutoView 一键访问正确的解剖视图;自动范围的 CT 和 MR 预设(肌肉骨骼、心血管、身体区域、器官)
从不同的角度描述了抽象的突触多样性,从释放的特定神经递质到其多样化的生物物理特性和蛋白质组谱。然而,在大脑中所有突触种群中,尚未系统地识别出跨性水平的突触多样性。为了量化和识别神经元细胞类型的特定突触特征,我们将Syngo(突触基因本体学)数据库与小鼠新皮层的单细胞RNA测序数据相结合。我们表明,单独具有与所有基因相同的功率的突触基因可以区分细胞类型。细胞类型的歧视能力并非在突触基因上平均分布,因为我们可以识别具有更大细胞类型的表达的功能类别和突触室。突触基因和特定的Syngo类别属于三种不同类型的基因模块:在所有细胞类型上的逐步表达,选定的细胞类型中的梯度表达以及细胞类别类别或特定于细胞类别的特征。此数据提供了对新皮层突触多样性的更深入的了解,并确定潜在标记,以选择性地识别特定神经元种群中的突触。
抽象背景和目的brainomix电子震荡是一种基于人工智能的决策支持工具,可在急性中风的背景下解释CT成像。虽然电子卒中有可能提高诊断的速度和准确性,但实际验证是必不可少的。这项研究的目的是前瞻性评估brahimix e-stroke在未选择的急性急性缺血性中风的患者中的性能。方法研究队列包括2021年10月至2022年4月之间进入伦敦大学医院Hyper急性中风单位的所有患者。对于电子镜头和电子cta,地面真理是由具有访问所有临床和成像数据的神经放射科医生确定的。对于E-CTP,将核心梗塞和缺血性半阴茎的值与Syngo衍生的核心阴茎的值进行了比较。结果在研究期间接受的551名患者进行了1163项研究。平均在4分钟内通过电子冲程成功处理1130(97.2%)。用于鉴定急性脑动脉领域缺血,电子镜头的精度为77.0%,比敏感(58.6%)更具体(83.5%)。识别高密度血栓的准确性较低(69.1%),这主要是由于许多假阳性(正预测值为22.9%)。急性出血的鉴定高度准确(97.8%),灵敏度为100%,特异性为97.6%;假阳性通常是由钙化区域引起的。大容器闭塞的E-CTA准确性为91.5%。E-CTP提供的核心梗塞和缺血性半体积与Syngo提供的核心体积密切相关。通过(ρ= 0.804-0.979)。结论Brainomix E-STROKE软件提供了急性中风设置中CT成像的快速可靠分析,尽管根据制造商的指导,应将其用作专家解释的辅助功能,而不是独立的决策工具。
患者为一名 63 岁男性,因腹痛入院。实验室检查显示 IgG4(19.3 g/L)升高,接近正常上限的 8 倍。腹部 CT 显示胰腺肿块及腹主动脉及胆道系统周围软组织病变。在完成一系列检查和多学科讨论后,根据 2019 年 ACR/EULAR IgG4-RD 分类标准 ( 2 ) 的纳入标准,患者累计评分为 38 分,诊断为 IgG4-RD。患者既往史包括高血压、II 型糖尿病、冠状动脉疾病伴稳定型心绞痛以及因创伤行脾切除术。通过 DECT(SOMATOM Drive,西门子医疗,德国福希海姆)和 Syngo 进行冠状动脉计算机断层扫描血管造影 (CCTA)。在工作站上,在专业工程师的指导下使用“CT冠状动脉”“CT双能量”和“CT心脏功能”工具进行测量,手动绘制圆形感兴趣区域(ROI),确保基于多平面三维重建的ROI位于病变中心,观察者内和观察者间组内相关效率(ICC)分别为0.90和0.96。基于深度学习的冠状动脉CT血管造影(FFR CT)血流储备分数测量由科亚医疗独立核心实验室进行( 3 )。CCTA显示多条冠状动脉中度至重度狭窄病变(图1B~D);左前降支 (LAD) 病变最严重,狭窄程度为 75%–99%,对角支狭窄程度为 90%,左回旋支 (LCX) 狭窄程度为 75%–90%,右冠状动脉 (RCA) 狭窄程度为 50%–90%,这些病变均经侵入性冠状动脉造影 (ICA) 证实(图 1F–H)。有趣的是,该患者的三支血管周围既有非钙化斑块,也有大量肿瘤样病变(图 1A)。后者病变可能是由 IgG4-RD 引起的,但在 ICA 期间被忽视了。众所周知,IgG4-RD 引起的动脉周围炎主要影响外膜,而内膜和中层受累较少(1)。但非钙化斑块主要位于管腔内,因为它最初发生在冠状动脉内膜。近端LAD内的斑块与冠状动脉周围的IgG4相关浸润更容易区分;因此我们选择该区域来测量两个病变(图1I)。近端LAD内的肿瘤样病变在平扫图像(管电压100keV)中的平均CT衰减值为38HU,与位于同一张CT轴位图像上的纤维脂肪斑块(45HU)相同。在延迟增强阶段,非钙化斑块的平均CT衰减为64HU,而肿瘤样病变为100HU。结合它们的增强特征,进一步可确定非钙化斑块及IgG4相关浸润物。首先,比较LAD不同病变的碘密度。动脉期肿瘤样病变比非钙化斑块摄取更多的碘,且差距随时间延长而扩大(图1I、N)。绝对碘和标准化碘