图4:a)示意图描述nCc动力学控制的连接; b)通过单盘动力学控制的连接 - 硫硫化在nC方向上合成冈比亚抗凝蛋白硫蛋白的合成。
我们介绍了Multidiff,这是一种新颖的方法,用于从单个RGB图像中始终如一地进行新颖的视图综合。从单个参考图像中综合新观点的任务是大自然的高度不足,因为存在多种对未观察到的区域的合理解释。为了解决这个问题,我们以单核深度预测变量和视频扩散模型的形式结合了强大的先验。单核深度使我们能够在目标视图的扭曲参考图像上调节模型,从而提高了几何稳定性。视频扩散先验为3D场景提供了强大的代理,从而使模型可以在生成的图像上学习连续和像素精度的对应关系。与依靠容易出现漂移和误差累积的自动格言形象生成的方法相反,Multidiff共同综合了一系列帧,产生了高质量和多视图一致的RE-
数据重播是图像的成功增量学习技术。它通过保留原始或合成的先前数据的储存库来防止灾难性的遗忘,以确保模型在适应新颖概念的同时保留过去的知识。但是,它在视频域中的应用是基本的,因为它只是存储了框架以进行动作识别。本文首次探讨了视频数据重播技术的递增动作分割,重点是动作时间段。我们提出了一个时间连贯的动作(TCA)模型,该模型代表使用生成模型而不是存储单个帧的动作。捕获时间连贯性的调节变量的集成使我们的模型了解随着时间的流逝的作用进化。因此,TCA为重播产生的动作段是多种多样的,并且在时间上是连贯的。在早餐数据集上的10任任务增量设置中,与基准相比,我们的AP可以显着提高准确性高达22%。
虽然扩散模型已显着提高了图像生成的质量,但它们在这些图像中准确且相干渲染文本的能力仍然是一个重大挑战。场景文本生成的常规基于扩散的方法通常受到对中间布局输出的依赖的限制。这种依赖性通常会导致文本样式和字体的多样性限制,这是布局生成阶段的确定性质所引起的固有限制。为了应对这些挑战,本文介绍了SceneTeTgen,这是一种基于新颖的扩散模型,专门设计用于规避预定义布局阶段的需求。这样做,场景 - 文本促进了文本的更自然和多样化的代表。SceneTextGen的新颖性在于其三个关键组成部分的整体:一个字符级编码器,用于捕获详细的印刷属性,并与字符级实例分割模型和Word-
本文介绍了2019年国际山区会议(IMC)会议的综合,并得到了关键文献的支持,并为未来的研究和相关活动提供了建议。IMC于2019年9月8日至12日在奥地利因斯布鲁克举行,吸引了来自52个国家的526名参与者。其目的是鼓励自然,空间,社会和应用科学家之间的深度跨学科讨论,以提高对山区系统的理解,对压力源的反应以及对改变的弹性。In this regard, it was intended to build upon the 3 mountain conferences that took place in Perth, Scotland, in 2005, 2010, and 2015, which resulted in the publication of proceedings, with conclusions and recommendations for research (Price 2006), 2 special issues of Mountain Research and Development (Price et al 2012; Price, Greenwood, et al 2016), and analyses of contributions with syntheses and recommendations for research (Bj € ornsen Gurung 2006;
简短的背景:气候变化和生物多样性损失威胁着我们星球在所有社会生态和社会经济水平上。气候变化和生物多样性变化本质上是相互联系的。每个人都会根据变化的方向恶化或改善对方的影响,这使得其组合管理对于拥有可居住的气候,自我维持的生物多样性以及所有人的生活质量至关重要。尽管气候变化和生物多样性变化以复杂的相互依存方式相互影响,但它们通常在自己的研究学科中单独解决,因此互联界和反馈通常无法完全解决。了解社会决定因素和气候生物多样性相互作用的含义为减轻对人和自然的互惠效应提供了机会,对世代代内和几代人的公平产生了影响。
摘要 - 聚噻吩和多吡咯是两个知名的导电聚合物,具有多种特性,并且在电子,传感器和能量存储等扇区中进行了多种潜在应用。本文进一步研究了聚噻吩和多吡咯的合成和分析。息肉吡咯和聚噻吩。分析这些聚合物所采用的方法包括光谱(UV-VIS,FTIR),热分析(TGA,DSC),显微镜(SEM,TEM)和电化学分析(环状伏安法)。研究了多吡咯和聚噻吩的几种特征,并与它们的电化学,热,形态和结构特性有关。我们还讨论了这些导电聚合物如何由于其表征所揭示的独特性能而在电气设备,传感器和能源存储系统中使用。聚噻吩和多吡咯烷现在可以在广泛的高科技应用中使用,因为它们的合成和特性是更众所周知的。
鉴于化学行业对绿色和可持续技术的需求不断增长,他们的原子有效和选择性氧化反应代表了一个关键的挑战。 [1-5]一氧化二氮,N 2 O,在解决此问题中起着重要的作用。 虽然它是一种良好的特种化学物质,主要以其用作麻醉而闻名,但在1980年代,它已开始引起作为选择性氧化剂的大幅关注。 由于其捐赠单个氧原子的能力,它避免了过度氧化的风险,并且尤其是在生态上良性n 2作为唯一的副产品,将其作为许多常规氧化剂的绿色替代品。 [6-8]在接下来的几年中,N 2 O已被证明可以解锁苯对苯酚或甲烷至甲醇的一步氧化的独特途径。 [9,10]前者的高度选择性和便利性,导致了1990年代后期的Alphox过程。 在其中,Boreskov Institute鉴于化学行业对绿色和可持续技术的需求不断增长,他们的原子有效和选择性氧化反应代表了一个关键的挑战。[1-5]一氧化二氮,N 2 O,在解决此问题中起着重要的作用。虽然它是一种良好的特种化学物质,主要以其用作麻醉而闻名,但在1980年代,它已开始引起作为选择性氧化剂的大幅关注。由于其捐赠单个氧原子的能力,它避免了过度氧化的风险,并且尤其是在生态上良性n 2作为唯一的副产品,将其作为许多常规氧化剂的绿色替代品。[6-8]在接下来的几年中,N 2 O已被证明可以解锁苯对苯酚或甲烷至甲醇的一步氧化的独特途径。[9,10]前者的高度选择性和便利性,导致了1990年代后期的Alphox过程。在其中,Boreskov Institute在其中,Boreskov Institute
自2022年以来由生物多样性中心资助,该项目是通过四个面对面的研讨会开发的,还有其他三个在线会议,参与者共同努力在实现上述目标所需的特定工作流程上合作:S:1-数据库协调; 2-树多样性的模式; 3-树木多样性的驱动因素;和4-树木脆弱性对于气候变化情景(作为新热带生物多样性保护的原始工作的一部分)。
近年来,生成模型取得了重大进展,尤其是在文本到图像合成领域。尽管取得了这些进展,但医学领域尚未充分利用大规模基础模型的功能来生成合成数据。本文介绍了一种文本条件磁共振 (MR) 成像生成框架,解决了与多模态考虑相关的复杂性。该框架包括一个预先训练的大型语言模型、一个基于扩散的提示条件图像生成架构和一个用于输入结构二进制掩码的附加去噪网络。实验结果表明,所提出的框架能够生成与医学语言文本提示一致的逼真、高分辨率和高保真的多模态 MR 图像。此外,该研究根据文本条件语句解释了生成结果的交叉注意力图。这项研究的贡献为未来文本条件医学图像生成的研究奠定了坚实的基础,并对加速医学成像研究的进步具有重要意义。
