尽管联芳骨架在天然化合物和药用化合物 1 中非常普遍,但包含糖部分的结构仍然很少。作为天然存在的物质,一些糖功能化的联芳分子(图 1)已从海棠 2 、火棘( 1 ) 3 繁缕( 2 ) 4 和珍珠菜 5 中分离出来,这些植物的茎、树皮、果实和根一直被用于传统中药。化合物 3a,b 存在于云芝 6 和厚朴 7 中,而它们的合成同源物 3c 则被证明 8 是一种很有前途的分子,可用于开发一类新型抗抑郁药物。鞣花单宁是天然多酚,属于可水解单宁类,具有一个或多个六羟基联芳单元,围绕着一个中心葡萄糖核心。 9 其中,1951 年从马豆中分离出来的 corilagin 4 表现出了较强的抗肿瘤活性。10 1995 年,11 对一系列 ( -D-甘露吡喃糖基)联苯底物 5 抑制 E-、P- 和 L- 选择素-IgG 融合蛋白与 HL60 细胞表面表达的 sLex 结合的能力进行了测定。糖功能化联芳分子生物活性的多样性使得它们的硫代类似物成为设计新型生物活性联苯糖苷的主要候选物。事实上,硫糖可以用作糖模拟物,对化学和酶降解都更加稳定。在此背景下,我们最近报道了两种通过
时钟约束规范语言(CCSL)已被广泛认为是对实时和嵌入式系统定时行为的建模和分析的有前途的系统级规范。然而,加上现代系统的日益复杂性以及严格的市场限制,需求工程师可以准确地确定基于天然语言的需求文档的CCSL规范变得越来越困难,因为它们缺乏正式的CCSL CCSL建模和设计自动化工具方面的专业知识,无法支持快速和自动生成CCSL的规格。为了解决上述问题,在本文中,我们引入了一种新颖有效的增强学习(RL)基于基于的合成方法,该方法可以促进需求工程师快速找出他们预期的CCSL规格。对于给定的不完整的CCSL规范,我们的方法采用基于RL的枚举来探索所有可行的解决方案,以填补CCSL约束中的孔,并利用好奇心驱动的探索来加速枚举过程。基于我们提出的好奇心驱动探索启发式和演绎推理技术的结合,我们的方法不仅可以有效地修剪无结构的枚举解决方案,而且还可以优化枚举过程以快速搜索最紧密的解决方案,因此可以大幅度地加速整体合成过程。全面的实验结果表明,我们的方法在合成时间和合成精度方面都显着超过最先进的方法。
抽象目的:VIIA因子是一种糖基化的二硫键异二聚体,属于涉及凝结过程的丝氨酸蛋白酶家族。抑制VIIA因子是新型抗凝剂的关键靶标之一。 凝血因子VIIA抑制作用最近引起了人们的关注,作为一种有趣的抗血栓治疗策略。 借助X射线晶体学和基于结构的设计,我们能够发现一系列新型的N-苯基-2-(苯基 - 氨基)乙酰酰胺衍生物,对因子VIIA具有显着的亲和力。 材料和方法:22种化合物的合成是基于Schotten-Baumann反应。 通过物理,光谱和元素分析证实了合成的化合物。 使用凝血酶原测定法评估了体外,抗凝活性。 结果:化合物4、7、15、16和19在体外表现出良好的抑制性抗凝活性,并且在硅中显示出良好的对接得分。 n-苯基-2-(苯基氨基)乙酰酰胺为合成新型和有效的抗凝衍生物的合成提供了良好的模板。 结论:N-苯基-2-(苯基氨基)乙酰胺衍生物可以用作凝结疾病的潜在药物化合物。 这项研究的目的是利用硅分子对接和体外抗凝剂活性,以增强效力设计和合成基于结构的新因子VIIA抑制剂。抑制VIIA因子是新型抗凝剂的关键靶标之一。凝血因子VIIA抑制作用最近引起了人们的关注,作为一种有趣的抗血栓治疗策略。借助X射线晶体学和基于结构的设计,我们能够发现一系列新型的N-苯基-2-(苯基 - 氨基)乙酰酰胺衍生物,对因子VIIA具有显着的亲和力。材料和方法:22种化合物的合成是基于Schotten-Baumann反应。通过物理,光谱和元素分析证实了合成的化合物。使用凝血酶原测定法评估了体外,抗凝活性。结果:化合物4、7、15、16和19在体外表现出良好的抑制性抗凝活性,并且在硅中显示出良好的对接得分。n-苯基-2-(苯基氨基)乙酰酰胺为合成新型和有效的抗凝衍生物的合成提供了良好的模板。结论:N-苯基-2-(苯基氨基)乙酰胺衍生物可以用作凝结疾病的潜在药物化合物。这项研究的目的是利用硅分子对接和体外抗凝剂活性,以增强效力设计和合成基于结构的新因子VIIA抑制剂。
从位置B更改为其非对映异构体a。尚未确定负责C3-二聚化的酶为当前日期。它也由Reddy等人提出。该途径可用于通过C-24氧化抗活化的代谢产物[18]在胆汁酸代谢中表征良好的现象,在胆汁酸代谢中,该反应被胆汁酸羟基甾体脱氢酶催化[27]。该途径在类固醇激素(如雄激素)的激活和/或灭活中也起着主要作用[28]。尽管结合亲和力低于钙三醇,但1 A,25(OH)2 -3- EPI-D 3仅在产生的特定组织中才具有显着的生物学活性[29]。1 A,25(OH)2 -3-EPI-D 3化合物的转录响应在不同组织中的不同VDR-指导基因的不同。例如,它显示骨钙素基因和较低的HL60分化[30]的激活较低,但在1 A,25(OH)2 D 3具有抑制角质形成细胞的细胞增殖[19]和抑制甲状腺功能旁分泌的甲状旁腺副细胞[25]时,几乎具有等值的活性。这些与其低钙化活性相关的体外特性[31,32]为该化合物分配了潜在的治疗兴趣。要进一步揭露1 A,25(OH)2 -3-EPI-D 3 /HVDR-LBD综合的结构机制和结构 - 活性关系,我们描述了一种更有效的合成途径,以合成1 A,25(OH)2 -3-EPI-D 3,其中一些具有其体外生物学和与HVDR的体外生物学和晶体结构的合成。
*通讯作者邮件:mksamy14@yahoo.com与属性分解的GAN(AD-GAN)提出了一个新颖的生成对抗网络框架,可通过将属性分解为单独的组件来促进对图像合成的精确控制。该模型引入了一种创新的解开图像属性的方法,可以在不影响他人的情况下对特定特征进行单独修改。通过利用属性分解的表示形式,Ad-Gan有效地隔离了面部图像中的各种元素,例如姿势,表达和身份,从而能够生成高度逼真和可定制的图像。这种方法可显着提高图像生成任务的灵活性和准确性,使其成为需要详细属性操作的应用程序的宝贵工具。关键字:图像合成,gan,网络1。引言近年来,生成的对抗网络(GAN)已成为图像合成的有力框架,从而能够生成高质量的,逼真的图像。尽管具有令人印象深刻的功能,但基于GAN的图像合成中的重大挑战之一是对生成图像的特定属性进行细粒度的控制。传统的gan体系结构经常纠缠着各种属性,因此很难在不无意中改变其他属性的情况下修改一个属性。
摘要 — 本文提出了一种用于多频带带通滤波器 (MBPF) 的相似变换方法,将星型拓扑转换为直列拓扑。介绍了一种通用理论技术,用耦合矩阵的相似变换旋转代替传统的通过滤波器综合逐步提取 LC 电路,解决了参数提取过程中的舍入误差,提高了理论综合结果的准确性。直列拓扑的应用大大提高了滤波器设计的灵活性,降低了电路复杂性,简化了高阶 MBPF 的制造。基于基片集成波导 (SIW) 技术,设计和实现了一系列示例,包括三频、四频,特别是首次报道的五频三阶切比雪夫 SIW 带通滤波器。模拟响应与测量结果之间具有良好的一致性,验证了设计的滤波器模型和提出的理论方法。
胰岛素代谢在胰腺β细胞中的失调需要对糖尿病患者(DM)使用外源性胰岛素注射(DM)使用外源性胰岛素。但是,这种注射经常与某些挑战有关,例如降血糖事件和身体不适。这项研究的目的是通过智能材料金属有机框架(MOF-5)设计一个新型的胰岛素输送平台,该平台纳入了溶解微针(DMN),作为一种更有效且较小的侵入性替代方案。在这方面,DMN制造使用纤维素纳米晶体(CNC),这些纳米晶体(CNC)来自甘蔗渣生物质的改良纤维素。本研究的发现表明,X射线衍射(XRD)分析证实了CNC的成功合成,结晶度指数为57%。MOF-5的掺入以多孔和响应材料为特征,可显着提高胰岛素的递送效率。扫描电子显微镜 - 能量色散X射线光谱(SEM-EDX)证实了MOF-5的孔结构的发展,并针对微针的应用优化了形态。此外,MOF-5的XRD分析表示64%的结晶度指数,反映了其结构完整性。MOF-5用作释放调节剂,确保持续的胰岛素给药并减轻过度释放的风险。将DMN与MOF-5整合在一起,为糖尿病管理提供了高效且微创胰岛素输送方法。体外实验表明,在8小时内,受控胰岛素释放了78%,而体内研究表明使用MOF-INS配方在动物模型中逐渐和受控的血糖调节。
氧[17-22],电化学氧化[23,24]和光化学氧化技术[25]已成为替代天然方法。 但是,这些方法具有重要的限制:底物必须是具有不愉快气味的硫醇。 这阻止了他们大规模的广泛使用。 最近,研究工作重点是探索替代试剂,这些试剂比硫醇具有无味和更稳定的优势。 这些替代方法包括氯化磺酰氯[26],磺酰基氢氮[27],二硫化碳[28]和硫酸钠(方案1)[29-32]。 在可用的替代方案中,硫酸钠特别有趣,因为它更稳定,更易于运输,并且广泛用于有机合成[33-37]。 使用亚硫酸钠作为建造二硫化物的起始材料时,通常需要将等效的还原剂引入等效的还原剂,例如PPH 3 [29],HI [30],HPO(OET)2 [31]或铁粉[32]或铁粉[32] 尽管已经进行了许多关于硫酸钠二硫化物合成的研究,但在不使用其他氧化还原试剂的情况下,开发了合成硫酸钠二硫化物的方法的发展仍然是一项具有挑战性的任务。氧[17-22],电化学氧化[23,24]和光化学氧化技术[25]已成为替代天然方法。但是,这些方法具有重要的限制:底物必须是具有不愉快气味的硫醇。这阻止了他们大规模的广泛使用。最近,研究工作重点是探索替代试剂,这些试剂比硫醇具有无味和更稳定的优势。这些替代方法包括氯化磺酰氯[26],磺酰基氢氮[27],二硫化碳[28]和硫酸钠(方案1)[29-32]。在可用的替代方案中,硫酸钠特别有趣,因为它更稳定,更易于运输,并且广泛用于有机合成[33-37]。使用亚硫酸钠作为建造二硫化物的起始材料时,通常需要将等效的还原剂引入等效的还原剂,例如PPH 3 [29],HI [30],HPO(OET)2 [31]或铁粉[32]或铁粉[32]尽管已经进行了许多关于硫酸钠二硫化物合成的研究,但在不使用其他氧化还原试剂的情况下,开发了合成硫酸钠二硫化物的方法的发展仍然是一项具有挑战性的任务。
抽象大多数自动表达分析系统试图识别一系列传统的表达方式,例如幸福,悲伤,愤怒,惊喜和恐惧等。尽管这套表达方式是面部最典型的表达式,但它与身体表达式所告诉我们的内容并不是最代表性/相关的。本文提出了一种新颖而通用的方法,用于使用人类姿势识别身体表情。我们的方法基于给定表达式产生的中性运动的概念。第二次,我们估计残基函数,作为两个相关运动之间的差异,即表达式和中性运动。更准确地说,受心理学领域研究启发的此功能给出了运动的“中立性”得分。使用此“中立分数”,我们提出了一个成本函数,该成本函数能够从任何输入表达运动中综合中性运动。中性运动过程的合成基于两个嵌套的主成分分析,提供了一个可以移动和选择现实的人类动画的空间。在具有异质运动和身体表达的四个数据库上评估了拟议的方法,并在超过艺术状态的身体表达识别方面获得了识别结果。
摘要:纳米凝胶具有独特的优势,例如高表面对象比,可扩展的合成方法和易于定制的配方,使我们能够控制尺寸并引入刺激性的特性。由于其生物相容性,高药物负荷能力以及受控和持续的药物释放,它们的药物输送潜力很大。开发更绿色和可持续的过程对于大规模应用至关重要。我们报告了使用高稀释的自由基聚合化,在无需表面活性剂的情况下,使用高稀释的自由基聚合,在共价交联的基于丙烯酰胺的纳米凝胶中,具有不同量的丙烯酰基-L-磷脂的合成。使用水性合成导致纳米凝胶具有较高的单体转化和化学产率,以及负电荷的纳米凝胶的较低的多分散性和较小的颗粒大小,导致更有效的合成方法,导致更有效的合成方法,降低了起始材料的损失,可扩展性的潜力降低,成本降低。这些纳米凝胶对生物医学应用的适用性得到了细胞毒性研究的支持,表明人类神经母细胞瘤细胞系的生存能力没有显着降低。