目的:评估小儿患者超快脑磁共振成像(MRI)的可行性。材料和方法:我们回顾性地审查了194名0至19岁(中值10.2岁)的儿科患者,他们在2019年5月至2020年8月之间均接受过超快和常规脑MRI。超快MRI序列包括T1和T2加权图像(T1WI和T2WI),流体衰减的反转恢复(FLAIR),T2*加权图像(T2*WI)以及扩散加权侵袭性图像(DWI)。定性图像质量和病变评估是由两位盲人放射学家以5点李克特量表进行的,每种方案对T1WI,T2WI和FLAIR序列的病变计数和大小进行定量评估。Wilcoxon签名的秩检验和类内相关系数(ICC)分析用于比较。结果:超快MRI的等效图像对比度的总扫描时间为1分钟44秒,传统MRI为15分钟30秒。总体而言,超快MRI的图像质量低于常规MRI的平均质量得分,超过序列MRI的平均质量得分范围从2.0到4.8,跨序列的常规MRI的图像得分范围为4.8至5.0(T1WI,T2WI,T2WI,FLAIR,FLAIR,FLAIR和T2*WI的p <0.001 n.01 wi n.018 [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [3]相对于常规MRI,超快MRI的病变检测率如下:T1WI,97.1%; T2WI,99.6%; Flair,92.9%; T2*WI,74.1%;和DWI,100%。超快和常规MRI之间的病变大小测量的ICC(95%置信区间)如下:T1WI,0.998(0.996–0.999); T2WI,0.998(0.997–0.999);和Flair,0.99(0.985–0.994)。结论:超快MRI大大减少了扫描时间,并提供可接受的结果,尽管图像质量略低于常规MRI,以评估儿科患者的颅内异常。关键字:超快磁共振成像;减少扫描时间;图像质量;小儿大脑成像;回声平面成像
放射线学利用计算算法从MRI扫描中提取定量成像特征,从而更深入地评估肿瘤异质性。在这项研究中,使用T2加权成像(T2WI)和扩散加权成像(DWI)分析了肿瘤内和周围区域的特征。该研究评估了不同的周围距离,发现与其他构型相比,T2WI中的3mm周围区域表现出优异的预测精度。这些放射素特征与临床参数(例如性别和MRN阶段)的整合导致了优化的预测模型。研究发现,结合周围放射线特征的模型优于仅依靠肿瘤内特征的模型。此方法在区分LVI的存在方面超过了常规成像,提供了一种非侵入性且高度准确的诊断工具。
2022年6月的机器学习(ML)型号。使用所有MRI序列(T1WI,T2WI,对比度增强(CE),Flair,DWI_B_HIGH,DWI_B_LOW和ADC)建立了第一种类型,而第二种类型是使用单个MRI序列建立的。结果使用最大相关性和最小冗余技术来基于所有序列找到ML模型的七个放射线特征。在训练和验证集中,预测精度分别为0.993和0.750,曲线下的面积(AUC)的面积分别为1.000和0.754。对于基于单个序列的ML模型,所选特征的数量为T1WI,T2WI,CE,CE,FLAIR,DWI_B_HIGH,DWI_B_LOW和ADC的8、10、10、13,9、7和6,分别为0.797〜1.000 〜1.000和0.583 〜0.583〜0.694
材料和方法:我们进行了一项回顾性研究,涉及300名结节硬化症复合物 - 相关癫痫病。该研究包括临床数据和T2WI和FLAIR图像的分析。临床数据包括性别,发病年龄,成像年龄,婴儿痉挛和固定用药数量。为了预测抗性药物治疗,我们开发了一种称为WAE-NET的多技术深度学习方法。此方法使用了多对抗MR成像和临床数据。将T2WI和FLAIR图像合并为Flair3,以增强结节性硬化病变病变和正常脑组织之间的对比度。我们使用具有上述变量的完全连接的网络培训了基于临床数据的模型。之后,创建了由Resnet3D体系结构构建的加权平均合奏网络作为最终模型。
摘要:磁共振成像 (MRI) 是一种利用强磁场产生人体各部位图像的成像技术。通常进行的检查是脑部检查。这项研究是在巴厘岛曼达拉医院进行的。为了了解大脑的状况,可以进行 MRI 检查。MRI 可以产生称为序列的图像,这些序列产生 T1 加权图像 (T1WI)、T2 加权图像 (T2WI),从而产生具有不同强度的可见图像。为了获得 T2WI,时间回波 (TE) 和时间重复 (TR) 必须很长,以使脂肪和水有机会衰减,这样脂肪和水的对比度才能很好地显现出来。这项研究旨在确定 TR 变化对 SNR 值的影响,并确定最佳 TR 以产生良好的图像值。在脑部 MRI 上生成 T2WI SNR。这个街头小贩活动使用了 Phillips 1.5 特斯拉型 MRI 飞机。数据收集自20名患者,TR值有3种变化,分别为3,500毫秒、5,500毫秒和7,500毫秒,总共获取了60张图像。通过直接在MRI设备上测量ROI来评估组织SNR值。对脑脊液(CSF)组织、脊髓进行SNR值分析。依次获得的SNR值在CSF组织中为174.24、211.22和244.51,在脊髓组织中为78.53、80.64和84.81。这个街头小贩活动表明,给出的TR值越长,SNR值就会增加。这是因为长TR值能够在更多切片中评估网络并提供更好的噪声信号值。7,500毫秒的TR变化可以产生最高的SNR值,从而得到的图像非常好。
背景:宫颈癌仍然是全球女性死亡率的主要原因,淋巴结转移(LNM)是患者预后的关键决定因素。方法:在这项研究中,分析了2018年1月至2024年1月期间153例宫颈癌患者的MRI扫描。将患者分为两组:103培训队列; 49在验证队列中。放射线特征。ITK-SNAP软件启用了宫颈癌肿瘤区域的三维手动分割,以识别目标区域(ROI)。收集的数据被划分为支持向量机(SVM)模型的培训和验证。结果:基于T2WI和ADC的组合放射线学模型表现出强大的诊断能力,在训练队列中达到曲线下的面积为0.804(95%CI [0.712-0.890]),AUC中的AUC和0.811(95%CI [0.721-0.921-0.902] in act in the训练队伍中的AUC中。包括放射线特征,国际妇科和妇产科联盟(FIGO)阶段和LNM在培训队列中的C-INDEX为0.895(95%CI [0.821-0.962]),在培训队列中的C-指数为0.895(95%CI [0.821-0.962]),在C-INDEX中为0.916(95%CI [0.825-0.987] Intaliatation in nor图)的C-指数为0.895(95%CI [0.821-0.962]),C培训队列中的C-INDEX为0.916(0.916(95%CI)(95%CI [0.825-0.987] Intalians Intecration。C统计数据均高于0.80,并且预测变量几乎与45度线一致,这与校准图中显示的结果一致。这表明我们的模型表现出良好的歧视能力和令人满意的校准。关键词:MRI,放射素学,淋巴结,转移,宫颈癌结论:利用T2WI与ADC地图相结合的MRI放射素学模型,提供了一种预测宫颈癌患者LNM的有效方法。
目的:分析多模式磁共振成像(MRI)图像中定量特征的诊断值,以构建用于乳腺癌的无线电摩学模型。方法:根据病理学发现,从2020年1月至2021年1月至2021年1月的95例患有乳房相关疾病的患者分为良性组(n = 57)和恶性组(n = 38)。所有病例均根据检查时间随机分为训练组(n = 66)和验证组(n = 29)(n = 29)。通过T1加权成像(T1WI),T2加权成像(T2WI),扩散加权成像(DWI),动态对比度增强(DCE)和明显的扩散系数(ADC)多模型MRI MRI,对所有受试者进行了检查。针对病理发现分析了MRI发现。构建了诊断性乳腺癌放射素学模型。分析了验证组中模型的诊断功效,并通过ROC曲线分析了诊断功效。结果:纤维肾上腺瘤占良性乳房疾病的49.12%,侵入性导管癌占恶性乳腺癌的73.68%。使用四倍方法,使用四倍的表方法,T1WI,T2WI,DWI,ADC和DCE在诊断乳腺癌中的敏感性为61.14%,66.67%,73.30%,78.95%和85.96%。用于诊断乳腺癌的T1WI,T2WI,DWI,ADC和DCE曲线下的面积分别为0.715、0.769、0.785、0.835和0.792。结论:多模式MRI图像中定量特征的构建无线电摩学模型对于乳腺癌的诊断很有价值。普通扫描,扩散,增强,普通扫描 +扩散,普通扫描 +增强,增强 +扩散的AUC和用于诊断乳腺癌的普通扫描 +增强 +弥漫性为0.746、0.798、0.816、0.816、0.839、0.839、0.890、0.890、0.906和0.906和0.92727。在诊断乳腺癌中,诸如普通扫描 +增强 +弥漫性之类的放射摩学模型的价值高于其他模型,并且可以广泛应用于临床实践。关键字:MRI,定量特征,成像组织学,模型,乳腺癌,诊断
一名57岁的男性出现了三周持续三周的局灶性左上肢震颤病史,没有任何其他局部症状或迹象,没有类似的抱怨或任何其他医学疾病的相关病史。临床和实验室检查正常。大脑和宫颈脊柱磁共振揭示了弥漫性加权图像(DWI)上的局灶性皮质高强度,在左侧的左侧较高强度上,在表观扩散系数(ADC)和Flair图像上,左侧的高压相应明显可观,但在T2WI上没有。患者在医院的不明显过程中对患者进行症状管理,并进行了随访。一个月后,他报道了逐渐进行性双侧上和下肢的弱点和疼痛的抱怨,这在发作中是模糊的,双边有意震颤,渐进性发育不良的症状恶化,张力增加,音调增加,超反射症引起了所有四个limbs的症状。他有轻微的迷失方向,并报告了幻觉和失眠的神经精神症状。在检查时,生命力在正常
宫颈脊柱骨髓病(CSM)是一种慢性压缩脊髓病变(Rao,2002; McCormick等,2003)。这是成年人中最常见的脊髓损伤形式,尤其是在老年患者中(McCormick等,2020)。在产生不可逆的脊髓损伤之前识别早期症状并提供有效的治疗非常重要(Edwards等,2003)。磁共振图像(MRI)通过可视化脊髓压缩的解剖学范围和脊髓内耗尽信号的变化而广泛用于CSM诊断(Takahashi等,1987; Al-Mefty等,1988; Ramanauskas et al。 1993; Shabani等人,2019年)。常规MRI通常包括T1和T2加权图像(T1WI和T2WI),可以提供椎骨,脊髓和周围软组织的高分辨率图像(Harkins等,2016)。然而,T1和T2信号强度的改变仍然限制了CSM早期阶段的诊断(Karpova等,2010)。需要一种敏感且可重复的成像技术来早期诊断和定量脊髓压缩。定量MRI可能是一种选择,因为T1映射显示了临床潜力(Maier等,2019; Maier等,2020),而T2和Proton密度(PD)映射很少有报道。合成MRI可以提供定量映射,包括T1,T2和PD映射以及多种对比度加权成像,例如T1-,T2加权图像,同时(Warntjes等,2008)。合成MRI技术已在许多区域广泛使用,并且在大脑,骨骼,骨骼,乳房,前列腺和腰椎椎间盘变性中表现出良好的诊断性能(Hagiwara等,2017; Cui et al。,2020; liu et al。据我们所知,CSM患者没有合成MRI的应用。因此,我们的研究旨在探索
目的:术前脑转移(BM)和胶质母细胞瘤(GBM)之间的区分由于它们在常规脑MRI上的相似成像特征,因此在术前具有挑战性。这项研究旨在通过基于MRI放射学数据的机器学习模型来增强诊断能力。方法:这项回顾性研究包括235例确认孤立性BM和273例GBM患者。患者被随机分配到培训(n = 356)或验证(n = 152)队列中。获得了传统的大脑MRI序列,包括T1加权成像(T1WI),对比-Enhanced_T1WI和T2加权成像(T2WI)。在所有三个序列上都描绘了脑肿瘤并分段。从人口统计学,临床和放射线数据中选择了特征。一个集成的集成机器学习模型,即弹性回归SVM-SVM模型(ERSS)和组合人口统计学,临床和放射线数据的多变量逻辑回归(LR)模型是用于预测性建模的。使用歧视,校准和决策曲线分析评估模型效率。此外,使用由47例GBM患者和43例孤立BM患者组成的独立队列进行外部验证,以评估ERSS模型的推广性。Results: The ERSS model demonstrated more optimal classification performance (AUC: 0.9548, 95% CI: 0.9337 – 0.9734 in training cohort; AUC: 0.9716, 95% CI: 0.9485 – 0.9895 in validation cohort) as compared to the LR model according to the receiver operating characteristic (ROC) curve and decision curve for the internal cohort.外部验证队列的最佳性能较低但仍然稳健(AUC:0.7174,95%CI:0.6172 - 0.8024)。具有多个分类器的集成的ERSS模型,包括弹性网,随机森林和支持向量机,产生了可靠的预测性能,并且表现优于LR方法。结论:结果表明,集成的机器学习模型,即ERSS模型,具有有效,准确的BM与GBM的术前分化的潜力,这可能会改善临床决策和脑肿瘤患者的结果。
