AG 农业 AGB 附件齿轮箱 AMM 机身维护手册 BOV 排气阀 CCW 逆时针 CW 顺时针 CSU 恒速装置(螺旋桨调速器) CT 压缩机涡轮 ECTM 发动机状况趋势监测 ESHP 等效轴马力 FCU 燃油控制单元 FI 飞行怠速(高怠速) FOD 异物损坏 GI 地面怠速(低怠速) HSI 热区检查 IAS 指示空速 IBR 整体叶片转子 ISA 国际标准大气 ITT 涡轮间温度(T5) MM 维护手册 MOP 主油压 MOT 主油温 Nf 自由涡轮转速 Ng 燃气发电机转速(N1) Np 螺旋桨转速(N2) OAT 室外空气温度 OSG 超速调速器 P0 旁路燃油压力 P1 燃油泵输送压力 P2 计量燃油压力 P2.5 压缩机(轴向级)排气压力(站 2.5) P3 压缩机排气压力(站 3)
t1:增加公共交通和主动旅行的使用,到2040 T2到2040 T2的每日通用汽车旅行的使用量少于50%:逐步逐步使用化石式私家车,用于零排放(TailPipe)替代品,到2024年,GM中有200,000 EV,到2024 T3:在我们的公路上处理Zero Zerions T4的最多污染物: (Tailpipe)到2035 T5:脱碳运输和运输到铁路和水运输B1:减少现有房屋的热量需求,通过每年改造61,000套房屋B2:将现有商业和公共建筑物的热量减少到2025 B3到2025 b3:在2025年降低10%的供应,以减少新建筑物的热量量,并将所有新的开发项目降低到2028年的新建筑物中,将其降低到2028年,从而使3个零碳的运输量增加202. 2025年与2018年水平相比,SCP2:变得更负责任的消费者,2024年的废物产量增加了2018年SCP3不超过20%:到2024 SCP4的回收率为55%:减少不必要的食品浪费
毒素 - 抗毒素(TA)系统是细菌用来调节噬菌体防御等细菌过程的普遍存在的两基因基因座。在这里,我们演示了一种新型III型TA系统AVCID的机制,并激活了对噬菌体感染的抵抗力。系统的毒素(AVCD)是一种脱氧胞苷脱氨酶,将脱氧胞苷(DC)转化为脱氧尿苷(DU),而RNA抗毒素(AVCI)抑制AVCD活性。我们已经表明,AVCD在噬菌体感染时脱氨基核苷酸脱氨基核苷酸,但是激活AVCD的分子机械词是未知的。在这里我们表明,AVCD的激活是由噬菌体诱导的宿主转录抑制,导致不稳定AVCI的降解。AVCD激活和核苷酸耗竭不仅减少噬菌体复制,而且还增加了缺陷的噬菌体形成。令人惊讶的是,AVCID不抑制的T7等噬菌体的感染也导致AVCI RNA抗毒素降解和AVCD激活,这表明AVCI的耗竭不足以赋予对某些噬菌体的保护。相反,我们的结果支持像T5这样较长复制周期的噬菌体对AVCID介导的保护敏感,而像T7这样的复制周期较短的噬菌体具有抗性。
摘要 2011 年 7 月 11 日,Heli-Union 运营的直升机 Sikorsky S76 C++ 注册号为 F-HJCS,从 Kanbauk 机场起飞,机上载有 7 名乘客和 2 名机组人员,前往 Yetagun 浮动储油卸货站 (FSO)。在 FSO 上着陆后,一名乘客下机,三名乘客登机。在此阶段,旋翼仍在转动。然后机组人员打算起飞前往 Yetagun 平台。机长(飞行员)垂直爬升。在距离平台 25 英尺处,飞行员启动周期性输入,然后声音警告响起,仪表板上的发动机故障警告灯亮起。机长注意到左发动机 T5 温度上升到红色区域(高达 983°C),并听到叮当声。他决定迫降直升机。他启动了浮动装置的部署。与海面的接触相当猛烈,然后直升机向左侧倾覆。机组人员和乘客设法逃离直升机。大约一小时后,所有机组人员和乘客都获救。三名乘客(包括副驾驶)溺水身亡,另外两名乘客受重伤。直升机乘员佩戴的紧急定位发射器或个人定位信标均未检测到信号。1) 事实信息
氮固定微生物的应用在植物营养中表现出了益处。 div>这项研究旨在评估氮固定微生物对玉米培养的影响(Zea Mays L.)。 div>在实验中,使用了三个重复的随机完整块设计(DBCA)。 div>应用的处理为:T1 -Paenibacillus polymyxa 2 L Ha -1; T2 -P。polymyxa 3 L ha -1; T3 -P。Polymyxa 4 L Ha -1; T4- pegotobacter Chroococcum 2 L ha -1; T5 -a。 T6 -A。Chrococcum 4 L ha -1; T7 -P。Polymyxa + A. Chroococcum 2 L ha -1; T8 -P。polymyxa + A. Chroococcum 3 L ha -1; T9 -P。Polymyxa + A. Chroococcum 4 L ha -1和T10-对照(无应用)。 div>评估的变量为:植物高度,茎直径和插入蛋白的插入。 div>结果表明,在农作物的播种(DDS)后55天,高度为182.01 cm的玉米植物的良好生长以及使用T9 -P. polymyxa + A. A. A. ChroCocum治疗获得了20.14 mm茎的直径。 div>此外,对于同样的处理,COB的插入也为120 cm。 div>
摘要:电子封装领域迫切需要具有树脂基体的高性能复合材料,因为它们具有低介电常数、出色的耐高温性、优异的耐腐蚀性、重量轻和易于成型等特点。在本文中,为了改变邻苯二甲腈的介电性能,制备了空心玻璃微球 (HGM) 填充的氟化邻苯二甲腈 (PBDP) 复合材料,其填料含量范围为 0 至 35.0 vol.%。扫描电子显微镜 (SEM) 观察表明改性 HGM 颗粒均匀分散在基质中。PBDP/27.5HGM-NH 2 复合材料在 12 GHz 时表现出 1.85 的低介电常数。含有硅烷化 HGM 填料的复合材料的 5% 热重温度 (T5) (481-486 ◦ C) 高于最低封装材料要求 (450 ◦ C)。此外,PBDP/HGM-NH 2 复合材料的耐热指数 (T HRI) 高达 268 ◦ C。PBDP/HGM-NH 2 复合材料的储能模量在 400 ◦ C 时显著增加至 1283 MPa,与 PBDP 邻苯二甲腈树脂 (857 MPa) 相比增加了 50%。本复合材料的优异介电性能和热性能可为电子封装和能源系统热管理的全面应用铺平道路。
•阿联酋科学院院长Maamar Benkraouda教授•意大利米兰理工学院Giulio Cerullo教授•Yazan Al Momany先生,科学的Atté先生,意大利大使馆在阿布·达比,阿联酋主持人,Pliny Innocenzi 14:00-15:00-15:00-15:00午餐 + Sessions i Sessike + Sessions i Sessike i Sessike 2:环境应用的先进材料主持人:Ashraf Hasan -Teresa Gatti 15:00-15:25 T5:Carlo Cantalini- L'aquila University -carlo.cantalini@univaq.it 15:25-15:25-15:50 T6:Sulaiman al Zohair -Zohair -Zohair -iaeu,Uae -S.S. Alzuaiaiae.50:50:50: 16:15 T7: Teresa Gatti - Polytechnic of Turin - Teresa.gatti@polito.it 16:15 - 16:40 T8: Dinesh Shetty - Ku, UAE - Dinesh.shetty@ku.ac.Ae 16:40 - 16:55 Coffee Break Session 3: Advanced Materials for Biomedical Applications Moderators: Abdelouahid Samadi Samadi -Luigi Menduti 16:55-17:20 T9:Plinio Innocenzi-萨萨里大学 - pliny@uniss.it 17:20-17:45 T10:Luigi Meduti-米兰大学-Luigi.Meduti.Meduti@unimi@unimi@unimi.it 17:45-11:45-11 t11 t11:ali traboldi -nyi -nyi -nyi dy.nyi.dy.dy.bru dru druu dru.你。 -18:35 T12:Yaser Greish -UAEU,阿联酋 - Y.AFIFI@UAEU.AC.AE
摘要:种子质量是物种繁殖的重要特征。在这种情况下,Cenostigma pyramidalis 对于恢复退化地区具有重要特性。然而,由于它生长在卡廷加,这种物种更容易受到植物病原体的感染。因此,在种植前后处理其种子以防止真菌的发生非常重要。这些替代方法之一是使用硅,它有助于提高活力和控制疾病。在这种情况下,目标是评估不同来源的硅在控制与 C. pyramidalis 种子相关的天然真菌及其生理质量方面的作用。实验在巴西帕拉伊巴联邦大学阿雷亚校区 II 的植物病理学实验室进行。种子在经过划痕处理以克服休眠后,用以下物质处理:T1 - 对照;T2 - Captana,T3 - Agrosilício plus®;T4 - Rocksil®;T5 - Sifol®; T6 - Chelal®;T7 - Bugram®。实验采用完全随机设计。对种子进行卫生、发芽和出苗测试。发芽和出苗测试中,每个处理使用 100 粒种子,重复 4 次,每次 25 粒种子;健康测试中,每个处理使用 10 次,每次 10 粒种子。所有硅源均能有效控制 C. pyramidalis 种子中的曲霉菌、枝孢菌和青霉菌。建议使用 Sifol® 进行处理,以控制真菌的发生率,而不会影响种子的生理质量。
部分学期(迷你课程)如果注册了部分学期或迷你课程并退学,请与收银员核实,因为这可能会改变学生的资格、金额或获得退款的截止日期。第一个五周 (F5),1 月 17 日 - 2 月 17 日 1 月 17 日,星期二-------------------------------- 开课第一天 1 月 18 日,星期三 --------------------------- 添加/删除课程的最后一天 2 月 3 日,星期五 -------------------------------- 退课的最后一天 最后上课日 --------------------------------------- 期末考试 2 月 20 日,星期一 ------------------------------ 在教务处提交成绩 第二个五周 (S5),2 月 20 日 - 3 月 31 日 2 月 20 日,星期一 ------------------------------ 开课第一天 2 月 21 日,星期二 ------------------------------ 添加/删除课程的最后一天 3 月 10 日,星期五 ------------------------------------ 退课的最后一天 最后上课日 --------------------------------------- 期末考试 4 月 3 日,星期一 ----------------------------------- 在教务处提交成绩 第三个五周 (T5),4 月 3 日 - 5 月 5 日 4 月 3 日,星期一 ----------------------------------- 开课第一天 4 月 4 日,星期二 ----------------------------------- 添加/删除课程的最后一天 4 月 21 日,星期五------------------------------------- 退课最后一天 最后上课日 --------------------------- 期末考试 5 月 15 日星期一中午 -------------------------- 成绩须在教务处公布 前八周
该研究研究了从乳杆菌(LAP)和lactiplantibacillus Plantarum(LPP)产生的生物后生物学对生产性能,鸡蛋质量和血清生化参数的影响。在40周龄时,将126只Lohmann母鸡随机分配给7种疗法,每只复制六只鸟类。基础饮食(T1)是没有补充(阴性对照)或以0.02%(阳性对照)补充四环素(T2)的。其他五个组:T3,T4(补充了生物后(圈)0.35%,(分别由乳杆菌细菌)产生的0.70%(lap)0.70%); T5,T6(补充了后饮食后饮食(LPP)0.35%,(LPP)分别由乳杆菌植物细菌产生的0.70%); T7(补充后饮食后饮食(0.35%圈 + 0.35%LPP)。生物学后和四环素(TET)不会影响体重,进食摄入量,进料转化率(FCR),鸡蛋重量,鸡蛋质量,鸡蛋质量或血清总蛋白质,白蛋白和球蛋白的体重(p≥0.05)。鸡蛋的产生和鸡蛋数量更大(p≤0.05)(lap 0.70%,LPP 0.70%和混合物(0.35%lap + 0.35%LPP)和TET补充组,与对照组相比(T1)。胆固醇和甘油三酸酯(0.35%的LAP,0.35%LPP除外),比T1显着降低(P≤0.05)。超氧化物歧化酶和过氧化氢酶活性(0.35%的LAP,0.35%LPP除外)提高了。结果表明,补充后生物学对生育性能和某些生化参数具有积极作用。
