抽象铝是当今使用最广泛的材料,因为包括铝是一种轻质金属,具有相对较高的拉伸强度,良好的形式形式(形式),对腐蚀和非磁性性具有抗性和非磁性性,因此铝在包括飞机行业在内的工业世界中是一种选择。但是,在包括铝合金7075在内的腐蚀环境中,金属仍然会腐蚀,该铝合金通常用于飞机行业。控制腐蚀的努力之一是使用抑制剂。抑制剂是一种化学物质,将其添加到较小的腐蚀环境中时,可以有效地减慢或降低腐蚀速度。测试包括测试机械性能作为支持数据以测试组成(拉伸测试,硬度测试和微结构)和腐蚀速率测试。测试使用环境中潜在的极化方法(TAFEL图)进行的腐蚀速率3.5%NaCl。使用的抑制剂类型是Na 2 WO 4的无机抑制剂,其浓度变化为0.1%,0.3%,0.5%和0.7%。结果表明,浓度为0.1%的抑制剂是降低腐蚀速率的最佳抑制剂浓度。腐蚀速率抑制剂的浓度越高。关键字:铝7075,腐蚀,抑制剂,钨,飞机。简介
Mangifera Indica(MI)或芒果叶作为铜抑制剂已被研究。在乙醇溶剂中提取Mi,并以1 M HCl溶液中不同浓度的0、0.4、0.6和0.8 mg/ml制备,以模仿腐蚀性环境。由UV-VIS分光光度计分析的预先准备的MI提取器在约370 nm处显示肩峰,这是由芳族C = C = C = C = C = C = C = C = C = C = C = O)功能的N→π*电子过渡产生的。傅立叶变换红外光谱(FTIR)发现,MI提取物表现出芳族C = C,C = O酚类化合物,C-OH和C-O拉伸振动的组。电化学阻抗光谱(EIS)和TAFEL图分析评估了以0.6 mg/mL浓度达到的最佳腐蚀抑制铜。结果由腐蚀电位的正转移,e Corr,较低的腐蚀电流,i Corr和腐蚀速率(CR)分别为-0.233 V,4.39 µA/cm 2和0.05 mm/yr。使用冶金显微镜评估腐蚀测试后铜底物的表面形态显示出由于MI提取物的分子吸附而引起的巨大腐蚀抑制。
在可持续能源生产的途径中的障碍基本上激发了研究人员制造高效且稳定的多功能电催化剂,以加快氧气还原反应(ORR)的缓慢动力学以及氧气和氢进化反应(OER和她)。为此,我们通过在氮磷酸化的超薄碳基质(RU@n - P - C)上通过PyloLysis通过Pyrolysis开发了ORR,OER和她的高性能电催化剂。Doped intrinsic heteroatoms (N and P) allowed for the co-existence of graphitic lattice carbons along with amorphous carbon, which aided in the uniform distribution of Ru NPs over the carbon matrix, thereby, facilitating the efficient electron transfer, forming synergistic effect, and suppressing agglomeration of Ru NPs.在800°C下制备的构造的RU@N - P - C杂种结构在她的电流密度为10 mA/cm 2的情况下显示为45 mV的低电势,而OER的含量为327 mV,其TAFEL坡度为115和66 mv/dec,分别在Alkaline介质中为115和66 mv/dec。此外,被构造的RU@n - p - C表现出与标准20%PT/C催化剂相似的ORR活动。此外,Ru@n - p - c异质结构在所有ORR,OER和她的过程中都表现出极好的稳定性,这进一步提出了其实际应用。因此,这项研究为创建与能量相关的电催化的尖端电催化剂铺平了道路。
摘要:在这项研究中,通过电化学方法制备了装饰的NF底物上的钴型Ni(OH)2。使用扫描电子显微镜(SEM),原子力显微镜(AFM),能量分散光谱(EDS),X射线光电学光谱(XPS)和X射线衍射(XRD(XRD)),使用扫描电子显微镜(AFM),能量分散光谱(EDS),X射线散射光谱(EDS)描述了制备材料的表面特性,粗糙度,化学成分和晶体结构。此外,使用衰减的总反射傅立叶变换红外光谱(ATR-FTIR)和拉曼光谱的光学表征技术用于确认PANI的聚合。结果表明,Pani和双金属氧化物/氢氧化物在Bare NF的平坦骨架上凝聚。在碱性培养基中进行氧气演化反应(OER)的Co-Ni(OH)2 /Pani-NF的电催化性能,并且表现出出色的电催化活性,表现出了出色的电催化活性,其过电势为180 mV@20 MA CM-2,带有Tafel Slope 62 mV dec-2 dec-2。TOF(10-2)值确定为1.58 V时为2.49 s-1,突出了Co-ni(OH)2 / pani-nf在催化OER时的内在活性升高。使用计时度测定法(CA)进行24小时的稳定性测试,以完成100 mA cm -2和循环伏安法(CV),对200个循环(CV)进行200个循环,扫描速率为5 mV s -1。结果表明,即使在暴露于这些条件之后,该材料即使在长期接触这些条件后仍保持其电化学性能和结构完整性。这些发现强调了Co-ni(OH)2 /pani-NF是OER的有效且有前途的电催化材料,有可能通过水电解来提高氢产生的效率。
各种建模技术用于预测锂离子电池的容量褪色。代数还原模型本质上可以解释且计算快速,非常适合用于电池控制器,技术经济模型和多目标优化。用于用石墨阳极的锂离子电池,石墨表面上的固体电解质插入(SEI)生长占主导地位。这种褪色通常是使用物理知情方程式建模的,例如预测溶剂扩散限制SEI生长的时间根 - 根源,以及Arrhenius和Tafel类似方程,预测温度和最新电量率依赖性。在某些情况下,提出了完全的经验关系。但是,很少进行统计验证以评估模型最佳性,并且通常只研究了少数可能的模型。本文展示了一种新的程序,可以自动通过双级优化和符号回归从数百万算法生成的方程中自动识别降级降解模型。使用交叉验证,敏感性分析和通过自举通过交叉验证,敏感性分析和不确定性定量在统计上验证。在LifePo 4 /石墨细胞日历老化数据集中,自动识别了使用方形 - 根,功率法,拉伸指数和sigmoidal功能的模型,与人类专家确定的模型相比,具有更高的准确性和更低的不确定性,并证明先前已知的物理关系可以使用“重新验证的机器学习”。©2021作者。[doi:10.1149/1945-7111/abdde1]由IOP Publishing Limited代表电化学学会出版。这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。
氧化态通常由 Mo 2 C 的表面氧化引起,迄今为止,它们在 Mo 2 C 基催化剂的 HER 中的作用很少受到关注。O – Mo – C 界面可能在 Mo 2 C 催化剂中普遍存在,尽管这方面尚未得到详细研究。这是一个值得注意的疏忽,因为高度氧化的 Mo 中心很可能是从质子产生 H 2 的生产位点。在这项工作中,我们旨在探究薄而明确的氧化层和 O – Mo – C 界面对 N 掺杂碳负载的 Mo 2 C 的 HER 活性的作用。通过热解涂有钼-单宁酸配位聚合物的 ZIF-8 纳米晶体,成功制备了超细 b-Mo 2 C 纳米粒子 (b-Mo 2 CNP),该纳米粒子被限制在 N 掺杂多孔碳的空心胶囊内 (表示为 b-Mo 2-C@NPCC)。我们进一步发现,当暴露在空气中时,钼原子的表面层立即原位氧化为原子 Mo-O 表面层。这种方法确保了表面氧化的 Mo 原子和下面的 b-Mo 2 C 之间的强界面耦合,从而创建了优化的 O-Mo-C 表面电子转移途径,以实现高效的电催化。由于具有丰富的O – Mo – C界面,b -Mo 2 C@NPCC表现出优异的HER电催化活性,在0.5 MH 2 SO 4和1 M KOH中仅需80和132 mV的过电位即可达到10 mA cm 2 的催化电流密度。相应的Tafel斜率非常低(在H 2 SO 4中仅为40 mV dec 1,在KOH中仅为49 mV dec 1)。理论计算证实了O – Mo – C纳米界面对b -Mo 2 - C@NPCC优异的HER性能的益处。我们的工作为合理开发下一代HER催化剂铺平了新道路。
使用上述协议。瑞典印度尼西亚村庄的肖像小企业和企业家,也称为晶体管 mos。随着用户输入的字符逐个字符地出现在所有用户屏幕上,brown 和 woolley 消息发布了基于网络的 talkomatic 版本,通过超链接和 URL 链接。最后,他们确定的所有标准成为了新协议开发的先驱,该协议现在被称为 tcpip 传输控制协议互联网协议,通过超链接和 url 连接。Knnen sich auch die gebhren ndern,dass 文章 vor ort abgeholt werden knnen。
