材料处理,即磨蚀和磁化性质的金属处理;铸造服务、冶金服务、锅炉制造、钢材定制制造和生产、金属熔炼和铸造服务、金属连铸服务、铝和铜压挤;在轧制领域通过焊接将金属带端对端连接、镀铬、金属铸造服务;金属的酸洗、焊接、镀锡、轧制、压平、切割和刨削;锻造工程、金属镀锌、金属镀层、电镀、金属涂层、金属淬火硬化、金属抛光、金属焊接、金属硫化、组装第三方订购的产品、提供材料和金属处理领域的信息(美国 CLS. 100、103 和 106)。
世界野生动物基金尼泊尔(WWF)的目的是在尼泊尔的Terai Arc Landscape(TAL)项目区域出售7,500个沼气消化植物,并使用可再生的沼气能源代替该地区的燃料木材大量消耗。该项目的主要目的是通过将常规使用的燃料来源(例如燃料木和煤油)取代烹饪,从而使项目从项目中验证降低(Vers),以减少温室气体(GHG)排放。降低产生的排放学分将归BSP-N拥有。自2021年以来,他们收到了753,754个CER单元,用于减少化石燃料的燃烧,通过用沼气炉代替柴火。该项目正在进行中,并且将活跃到2028年。c)CER与类似项目的ver差异差异是由于定义
对一些模型植物 - 病原系统的研究已从多年的工具和资源开发中受益。对于绝大多数经济和营养重要的植物而言,情况并非如此,从而产生了农作物改善的瓶颈。木薯细菌疫病(CBB),由xanthomonas axonopodis PV引起。manihotis(XAM)是木薯(Manihot esculenta crantz)种植的所有地区的重要疾病。在这里,我们描述了木薯的开发,可用于可视化体内CBB感染的初始步骤之一。使用CRISPR介导的同源指导修复(HDR),我们在CBB易感性的3'端(S)基因Mesweet10a生成了含有GFP的植物。随后在转录和翻译水平上可视化了转录激活剂(TAL)效应tal20的Mesweet10a-GFP。据我们所知,这是通过木薯中的基因编辑进行HDR的第一个证明。
多年的工具和资源开发使一些模型植物-病原体系统的研究受益。但对于绝大多数具有经济和营养价值的植物来说,情况并非如此,从而造成了作物改良的瓶颈。由 Xanthomonas axonopodis pv. manihotis (Xam) 引起的木薯细菌性枯萎病 (CBB) 是所有种植木薯 (Manihot esculenta Crantz) 的地区的重要疾病。本文,我们描述了可用于可视化体内 CBB 感染的初始步骤之一的木薯的开发。利用 CRISPR 介导的同源定向修复 (HDR),我们生成了在 CBB 易感性 (S) 基因 MeSWEET10a 的 3' 端无疤痕插入 GFP 的植物。随后在转录和翻译水平上可视化了转录激活因子样 (TAL) 效应物 TAL20 对 MeSWEET10a-GFP 的激活。据我们所知,这是首次在木薯中通过基因编辑展示 HDR。
1 波士顿儿童医院血管生物学项目,美国马萨诸塞州波士顿 02115;golnaz.morad@childrens.harvard.edu(GM);Cassandra.daisy@childrens.harvard.edu(CCD)2 哈佛医学院外科系,美国马萨诸塞州波士顿 02115 3 哈佛大学文理研究生院,美国马萨诸塞州剑桥 02138 4 内布拉斯加大学林肯分校电气与计算机工程系,美国内布拉斯加州林肯 68588;hotu2@unl.edu 5 BIDMC 基因组学、蛋白质组学、生物信息学和系统生物学中心,贝斯以色列女执事医疗中心,美国马萨诸塞州波士顿 02115;tliberma@bidmc.harvard.edu(TAL); sdillon1@bidmc.harvard.edu (STD) 6 哈佛医学院医学系,美国马萨诸塞州波士顿 02115 7 波士顿儿童医院外科系,美国马萨诸塞州波士顿 02115 * 通讯地址:marsha.moses@childrens.harvard.edu;电话:+ 1-(617)-919-2207;传真:+ 1-(617)-730-0231
芝麻(芝麻杂种L.)是广泛种植的最古老的油料种子农作物之一,在全球的热带地区生长,具有印度次大陆,作为其祖先的中心和祖先(Bedigian,2003年)。然而,非洲是芝麻之外的大多数芝麻野生亲戚的起源中心。在印地语,Nuvvulu(泰卢固语),Ellu(Tamil),Tal(Gujarathi),Zhima(中国),Goma(Japan),Chamkae(韩国)和Kun-Zhut(俄罗斯)(俄罗斯)中,它被称为TIL。古代印度文学记录了芝麻在宗教仪式中的常见用途,表明芝麻的培养年龄(超过5000年)(Pathak等,2014)。基于可用的种质,使用印度的表型数据开发了核心收集(CC)样品(I. S. Bisht等,1998)和中国(Xiurong等,2000)。
[1] Kim YG, Cha J, Chandrasegaran S. 混合限制性内切酶:锌指融合至 Fok I 切割域。美国国家科学院院刊,1996,93:1156-60 [2] Boch J, Scholze H, Schornack S 等人。破解 TAL 型 III 效应物的 DNA 结合特异性密码。科学,2009,326:1509-12 [3] Moscou MJ, Bogdanove AJ。一个简单的密码控制 TAL 效应物的 DNA 识别。科学,2009,326:1501 [4] Jinek M, Chylinski K, Fonfara I 等人。适应性细菌免疫中的可编程双 RNA 引导 DNA 内切酶。 Science, 2012, 337:816-21 [5] Wyman C, Kanaar R. DNA双链断裂修复:结局好一切都好。Annu Rev Genet, 2006, 40:363-83 [6] Komor AC, Kim YB, Packer MS等人。无需双链DNA切割即可对基因组DNA中的目标碱基进行可编程编辑。Nature, 2016, 533:420-4 [7] Nishida K, Arazoe T, Yachie N等人。利用混合原核和脊椎动物适应性免疫系统进行靶向核苷酸编辑。Science, 2016, 353:8729 [8] Gaudelli NM, Komor AC, Rees HA等人。无需DNA切割即可对基因组DNA中的A*T进行可编程碱基编辑为G*C。 Nature, 2017, 551: 464-71 [9] Kurt IC, Zhou R, Iyer S, et al. CRISPR C-to-G 碱基编辑器用于诱导人类细胞中的靶向 DNA 颠换。Nat Biotechnol, 2021, 39: 41-6 [10] Zhao D, Li J, Li S, et al. 糖基化酶碱基编辑器可实现 C-to-A 和 C-to-G 碱基变化。Nat Biotechnol, 2021, 39: 35-40 [11] Anzalone AV, Randolph PB, Davis JR, et al. 搜索和
“作为法医建筑学的主任,魏茨曼发明了一门新学科,甚至可能是一门全新的科学,一门全心投入、全心投入的公民科学……魏茨曼找到了一种方法,可以驾驭我们日常的数字娱乐,以实现强烈的道德目的。”-Wired