摘要:在人类基因组研究中的技术改进和DNA操纵的可能性恢复了人类“亲维护”的运动,最重要的是,人类基因组的理想化是理想化的。从这个意义上讲,本文旨在解决ZFN,Talens和CRISPR-CAS9技术在实现这一标准方面的困境,并证明了它们如何恢复优生辩论,最重要的是,它们如何威胁人类物种的进化。还提出了该研究来介绍人权和生物伦理学如何在保护人类的价值和尊严的情况下平衡科学研究的激励措施。通过高等教育人员改善协调的支持 - 巴西(CAPES) - 通过学术卓越计划(PROEX)的支持。使用的演绎方法是通过书目研究技术实现的。
要用作治疗性,基因组编辑工具必须表现出较高的靶向效率和最小的有害或不需要的脱靶编辑,并且可传递到感兴趣的器官。重要的是要注意,疾病靶标将决定必须满足这些标准的确切程度。在该领域的早期努力使用了诸如锌指核酸酶和转录激活剂样效应子核酸酶(TALENS)之类的平台,但是对于每个新的目标编辑站点8设计和验证了新的锌指核酸酶或塔伦蛋白的要求,这些方法受到了阻碍。然而,这些广泛的蛋白质重新设计需求通过发现,机械阐明和适应性的适应性来缓解,以簇定期间隔短的短质体重复(CRISPR)平台进行基因组编辑。
Judy Hallett 在基因编辑小鼠模型领域拥有 25 年的从业经验,在生殖生理学领域拥有 33 年的从业经验。在获得麦吉尔大学物理学和生殖生理学学位后,她管理了昆士兰州的转基因动物服务中心,专门从事转基因小鼠的原核注射。她在普渡大学拓展了自己的专业知识,管理转基因小鼠核心设施,并采用了各种技术。Judy 还在托马斯·杰斐逊研究所工作过一段时间,专注于大鼠的原核微注射。她的研究涵盖 ZFN、TALEN 和 CRISPR 技术。
来自越来越多的植物物种的数据可以使用。基因组编辑工具又提供了准确的基因编辑的希望,为作物改善提供了新的机会。3在2023年,自创建第一个转基因植物以来已经有十三年了。这些植物最初是通过农杆菌促进的传统转型过程开发的。该方法现在已经采用了涉及锌指核酸酶和归巢核酸内切酶的技术。4-6 Talens(转录激活剂(如效应子核酸酶))后来成功引入了植物基因组编辑。7,8虽然早期序列特异性核酸酶(如转录激活剂样效应子(TAL效应子)核酸酶,锌指核酸酶和巨核)已证明
在近几十年内,涉及DNA精确操纵的核酸酶的技术已经发生了深刻的进步,成为了诱导音节突变的有希望的替代方法,并且对基因表达的薄而控制。是基因组编辑,例如核酸酶锌指(锌指核酸酶),具有转录本激活型效应的数字(Talens,英语转录本类核酸酶),以及最近的CRISPR/CAS技术(来自英语粘膜调节性调节性的短与核酶壳相关)。后者具有其革命性,尤其是为了缘故,普遍性和相对简单性(Pickar-Oliver; Gersbach,2019年)。此外,CRISPR/CAS是一种灵活的工具,需要进行修改,这有助于其持续的改进并多样化其在细胞功能和生物技术中的应用。
I 控制基因组编辑 人们设计和使用了许多创造性的基因组编辑方法,每种方法都有各自的挑战。在所有情况下,内切酶都会靶向特定的 DNA 位点,而靶向会导致“高效”的双链 DNA 切割。(请参阅幻灯片中对与 DNA 结合的设计的锌指和使用 Tal 效应物与 DNA 结合的 TALENS 的描述。这两种结构都将其 DNA 结合物附加到 FokI 核酸酶上。)CRISPR 系统的发现以及过去 3 年对该系统的设计彻底改变了基因组编辑。该系统不断发生变化,导致有关该主题的论文激增。我们将重点介绍您本周要阅读的论文中使用的 CRISPR-cas9 系统的简要概述。
模块5基因组编辑方法1 [6小时]转基因,CRE-LOXP,PHIC31-积聚酶和MOS1- Transposon的位点特异性染色体整合。模块6基因组编辑方法2 [6小时]带有Talens和ZFN的基因组工程。CRISPR-CAS9冥想基因组编辑的发现和机制。不同的CRISPR系统及其在基因组编辑中的用途。模块7 [3小时] SGRNA和修复模板的设计。下一代克隆技术。模型生物体的基因组工程方法。使用秀丽隐杆线虫模型有机体构建转基因和敲除。模块8 CRISPR介导的基因组编辑的应用[6小时] CAS9用于基因调节:CRISPR干扰(CRISPRI),CRISPR激活(CRISPRA)和CRISPRON。全基因组CRISPR敲除屏幕。在农业,食品和燃料行业中的应用。CRISPR对基因组编辑的道德问题。教科书
与锌指核酸酶 (ZFN) 和转录激活因子样效应核酸酶 (TALENS;图 1) 相比,成簇的规律间隔短回文重复序列-CRISPR 相关 9 (CRISPR-Cas9) 技术设计简单、成本低、效率高、操作简单,已成为近年来应用最广泛的基因编辑技术。CRISPR-Cas9 是一种在细菌中发现的适应性免疫反应,与其他基因编辑技术不同,它可以利用病毒和非病毒平台在多种生物体和细胞类型的双链断裂 (DSB) 中提供熟练的基因组编辑。1 CRISPR-Cas9 技术正在迅速应用于所有生物医学研究领域,包括心血管 (CV) 领域,它促进了人们对心血管疾病 (CVD)、心肌病、电生理学和脂质代谢的更深入了解,并创建了各种细胞和动物模型来评估新疗法。2
具有可编程核酸酶的基因组编辑对临床翻译表现出了巨大的希望,但也揭示了由染色体易位引起的遗传毒性的风险或在脱靶位点插入突变的插入。在这里,我们描述了一种创新的测定法,以识别和量化源自CRISPR-CAS核酸酶或Talens的靶向活性的染色体畸变。cast-seq还检测了新型的染色体重排类型,包括同源性重组介导的同源介导的易位。取决于使用的设计师核酸酶,易位发生在0-0.5%的基因编辑的人类干细胞和约20%的靶基因座中含有大差点。总而言之,铸造SEQ分析与干细胞的治疗编辑特别相关,以在基因编辑产物的临床应用之前进行彻底的风险评估。
摘要:由真菌杂草虫L.引起的大米爆炸被认为是对世界大米生产的主要威胁之一。抗性品种的发展是最好的,可持续的控制替代品之一。植物育种工作已通过遗传图(连锁和关联)和标记辅助选择加速。On the other hand, genomic editing techniques, such as meganucleases (MNs), Zinc-finger nucleases (ZFNs), Transcription Activa tor–like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindrome Repeats/ CRISPR-associated protein 9 (CRISPR/Cas9), can be used to promote specific genetic modifications.同样,转基因也可以用于操纵特定基因。从这个意义上讲,这项工作旨在表征大米爆炸并阐明可用的生物技术替代方法,以加速改善水稻品种对水稻爆炸具有耐药性的发展。关键词:非生物压力,生物技术工具,Oryza sativa L.,pyricularia oryzae L.