2024 亚洲旅游科技展与亚洲国际旅游交易会和亚洲会展展览会同期举办,将于 2024 年 10 月 23 日至 25 日在新加坡金沙会展中心举行。今年展会的展位面积已经超过去年,参展的旅游科技展商也越来越多。主要参展商包括 Hotelbeds、Agoda、Go Global Travel、TBO Holidays、韩国旅游创业中心、Juniper Travel Technology、Convergent International Travel、Travel Compositor、SiteMinder、DerbySoft、Archipelago International、11-Infotech System、同程旅游、Airalo、广东启游国际旅行社、Green Motion International、连连支付和易宝支付。此外,还有来自 Agoda、D-EDGE Hospitality Solutions、Sabre Corporation、Booking.com 和千禧酒店及度假村的顶级领头演讲嘉宾。
性能指标引擎特定功率W/kg 158 1000 1000发电机组包括柴油发动机和交流发电机燃料存储系统特定能量kWh/kg 8.4 6.0 6.0 CAT C175-16,C175-20,C175-20 ESS ESS ESS WH/kg 200 200可能需要加固的燃料电池系统Btms w/kg w/kg gg gg w/kg gg gg w/kg kg gg 123 123,000年6月6日,00千kg (柴油)或生命周期(FCS)H 20,000 25,000 25,000 TBO:大修成本之间的时间指标4级或fcs $/kW 250 323 60 20%的4个修改引擎大修的津贴 Maintenance $/MWh 5.3 8.3 8.3 Reported as O&M, Includes SCR catalyst replacement Drivetrain Components Alternator $/kW 59 Included in Genset Rectifier $/kW 90 DC Link $/kW 1.5 DC-DC Converter $/kW 75 75 Need 2 for 2-WD drivetrain Inverter $/kW 75 75 75 Need 2 for 2-WD drivetrain AC Motor $/kW 120 120 120 120对于2-WD传动系统变速箱$/kW 70 70 70需要2对2-WD传动系统功率调节$/kW 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 6.25 5 3润滑$/kg $/kg/kg $/kg/kg/kg/kg 0.49报告为o&m,燃料成本量为5%的燃料成本(urea y 0.1%),5%的燃料(urea and oe y 5.18)参数经济寿命年15 15 15挽救价值的标价价格%23 23 23 23 23 23 FCS的零救助值和电池内部收益率(IRR)%7 7 7 7 7 7通货膨胀%2 2 2 2安装成本乘数1.3 1.3 1.3 1.3 1.3 1.3 30%安装附加费
Teledyne Continental —TCM 重点介绍了两款发动机。第一款是 O-200 轻型发动机,额定功率为 100 马力,转速为 2750 rpm。该发动机干重 199 磅,针对轻型运动市场进行了优化,TBO 为 2,000 小时。该公司还提供了 TSIOF-550-J 全权数字发动机控制 (FADEC) 模型。这款涡轮增压发动机额定功率为 350 马力,干重 570 磅,采用单杆操作,基于电子顺序端口燃油喷射,无需混合控制。最后,该公司与 CenTex 合作,为 Cirrus SR22 和 SR22 GTS 系列飞机提供 IOF-550-N 发动机 FADEC 改装。 FADEC 发动机消除了磁电机,提供飞行中发动机状态和诊断,以及全面的发动机监控,减少了维护,降低了运营成本,并提高了可靠性。www.GenuineContinental.com / 251-438-3411 / www.Centex.aero / 254-752-4290
是一种oquilibriuri条件,不应在Advane Cz'paeity中进行'Assuie8是劳动和CITA1的fittion1。MS劳动福克斯(Forco forco tho forco tho forco tho cormou!ental api tal Outpuio(ICOR))提到了技术rlaticiship bet treen treen Investmentrient ANC容量。tho z'olatianship ot Investinet ond dmnd之间是leyne'sian rultiplier anrlis uhic1£s thovúb3ect。proceè“ ngre1aticship0 gnerl pianrtii cban i es e gnerl pianrti cban i gne epi City目标11'一个努力tbo Outpv。• as taz irodit or 1ot lnterst 1oans It ray also,happen that the output goal set by the goverrnient does not equal private d em, nd thix quirir.g gerftvient aetion The naint is that ono cannot sinply se oqualit7 betoen destred an atua1 invetent or betan eapc ty and denand in an ecovioy uhee investors and cons=er á是Toriake神父,他们的decisioiis'
高效的轨迹预测工具将成为未来基于轨迹的运营 (TBO) 的关键功能。除了控制器操作之外,爬升飞行中的不确定性是飞行轨迹预测误差的主要组成部分。由于运营问题,飞机起飞重量和爬升速度意图(定义爬升曲线的关键性能参数)并不完全适用于基于回合的轨迹预测基础设施。在空中交通流量管理范围内,扇区进入和退出时间(包括爬升结束和下降开始的时间)是需求容量平衡过程的主要输入。在这项工作中,我们专注于爬升轨迹的不确定性,以量化和分析它们对爬升到巡航高度的时间的影响。我们通过飞机飞行记录数据集(即QAR)使用了模型驱动的数据统计方法。分析结果为飞机起飞重量和速度意图生成了概率定义。获得了这些爬升参数与飞行距离之间的回归,以减少战略层面的不确定性。此外,通过自适应不确定性减少来降低爬升不确定性也在飞行战术层面得到证明。通过模拟,说明了降低飞机质量不确定性对爬升时间的影响。关键词:空中交通管理、轨迹预测、不确定性量化、BADA 缩写
1974 年,美国国防部委托联合航空公司编写一份报告,介绍航空业为民航客机开发成本效益高维护计划所采用的技术。最终的报告名为《以可靠性为中心的维护》(F.S. Nowlan & H. Heap,国家技术信息服务,1978 年),描述了一种完全不同的飞机维护方法,该方法基于对传统维护实践的严格分析和对其缺点的评估。传统上,飞机维护计划的主要重点是确定具体的大修和退役间隔——大修间隔时间 (TBO)——以达到令人满意的可靠性水平。然而,对来自多家主要航空公司的大量运营数据进行工程分析后,我们对计划维护有效性的必要条件产生了令人着迷的见解。有两个发现特别令人惊讶:1. 对于复杂项目(如发动机),除非项目具有单一主要故障模式,否则计划大修对整体可靠性几乎没有影响。 2. 对于许多项目来说,根本没有任何形式的定期维护在技术和经济上都是可行的。例如,可靠性中心维护 (RCM) 研究人员早在 20 世纪 70 年代就确定,涡轮发动机的定期大修不会产生任何可靠性或经济效益,而严格按照状态维护此类动力装置可以延长使用寿命
4D 四维 ABRR 机载改道 ABTM 机载轨迹管理 ACARS 飞机通信寻址和报告系统 ANSP 空中导航服务提供商 AOC 航空公司运营中心 ARTCC 空中交通管制中心(“中心”) ATCSCC 空中交通管制系统指挥中心 CDM Net 协作决策网络 CDM 协作决策 CTOP 协作轨迹选项程序数据通信数字数据通信 EFB 电子飞行包 ERAM 航路自动化现代化 FAA 联邦航空管理局 FL 飞行高度 FMS 飞行管理系统 NAS 国家空域系统 NASA 美国国家航空航天局 NextGen 下一代空中运输系统 RAD 航路修正对话 RTA 所需到达时间 RTC 相对轨迹成本 SATM 战略机载轨迹管理 STAR 标准终端到达航路 SWIM 全系统信息管理 TASAR 交通感知战略机组请求 TBFM 基于时间的流量管理 TBO 基于轨迹的运行TFDM 终端飞行数据管理 TFM 交通流量管理 TFMS 交通流量管理系统 TMU 交通管理单元 TOS 轨迹选项集 TRACON 终端雷达进近管制
4D 四维 ABRR 机载改道 ABTM 机载轨迹管理 ACARS 飞机通信寻址和报告系统 ANSP 空中导航服务提供商 AOC 航空公司运营中心 ARTCC 空中交通管制中心(“中心”) ATCSCC 空中交通管制系统指挥中心 CDM Net 协作决策网络 CDM 协作决策 CTOP 协作轨迹选项程序数据通信数字数据通信 EFB 电子飞行包 ERAM 航路自动化现代化 FAA 联邦航空管理局 FL 飞行高度 FMS 飞行管理系统 NAS 国家空域系统 NASA 美国国家航空航天局 NextGen 下一代空中运输系统 RAD 航路修正对话 RTA 所需到达时间 RTC 相对轨迹成本 SATM 战略机载轨迹管理 STAR 标准终端到达航路 SWIM 全系统信息管理 TASAR 交通感知战略机组请求 TBFM 基于时间的流量管理 TBO 基于轨迹的运行TFDM 终端飞行数据管理 TFM 交通流量管理 TFMS 交通流量管理系统 TMU 交通管理单元 TOS 轨迹选项集 TRACON 终端雷达进近管制
摘要 高效的轨迹预测工具将成为未来基于轨迹的运营 (TBO) 的关键功能。除了管制员的行动之外,爬升飞行中的不确定性是飞行轨迹预测误差的主要组成部分。出于运营方面的考虑,飞机起飞重量和爬升速度意图(定义爬升剖面的关键性能参数)并不完全适用于基于回合的轨迹预测基础设施。在空中交通流量管理范围内,扇区进入和退出时间(包括爬升结束和下降开始的时间)是需求容量平衡过程的主要输入。在这项工作中,我们专注于爬升轨迹的不确定性,以量化和分析它们对爬升至巡航高度的时间的影响。我们通过飞机飞行记录数据集(即 QAR)使用了模型驱动的数据统计方法。根据此分析,为飞机起飞重量和速度意图生成了概率定义。获得了这些爬升参数与飞行距离之间的回归,以减少战略层面的不确定性。此外,通过自适应不确定性减少来降低爬升不确定性也在飞行战术层面得到体现。通过模拟,说明了降低飞机质量不确定性对爬升时间的影响。关键词:空中交通管理、轨迹预测、不确定性量化、BADA 缩写
全球 ATM 运行概念是由国际民航组织制定的,目的是在适应日益增长的交通量的同时,实现安全、可持续和环保的空中交通运行。ENRI 公布了其长期研究愿景,并一直致力于研究,以及为实现全球 ATM 运行概念 (GATMOC) 而在全球范围内开发和传播成果。长期研究愿景需要根据社会环境的变化和新开发技术的引入进行审查。因此,ENRI 定期审查其长期研究愿景,考虑与 CARATS * 和 GANP ** 等其他空中交通系统长期愿景的协调,并于 2019 年发布了最新版本。未来将实现基于轨迹的运行 (TBO),其中飞机轨迹会提前调整和确定,飞机将在指定时间沿着轨迹飞行。灵活的空中交通管理对于应对各种类型、不同性能和用途的飞机的预期增长至关重要。新的研究愿景将我们未来几十年的研究主题解释为路线图,其中主题大致分为四个研究领域:“通过提高运营安全性和可靠性有效利用空域”、“通过空域运营效率有效利用空域”、“优化机场运营”和“改善空中交通系统的基础技术”,重点是提高研究潜力并持续长期为社会做出贡献。ENRI 将根据这一长期愿景开展其研究和开发活动。