Short title: Tbx3/Tbx5 patterns the cardiac conduction system Key words: Tbx3, Tbx5, T-box transcriptional factors, cardiac conduction system (CCS) , ventricular conduction system (VCS), Tbx3 : Tbx5 double-conditional mouse line, Tbx3 : Tbx5 -deficient mice , reprogramming of VCS, heart rhythm,心律不齐,心形构图 *请发送信函:伊万·莫斯科维茨(Ivan P. Moskowitz),医学博士,博士学位。儿科,病理学和人类遗传学系芝加哥大学900 East 57 The Street,KCBD街5102芝加哥,伊利诺伊州芝加哥,60637电话:773/834-0462 imoskowitz@uchicago.uchicago.edu ozanna bunnicka-turek,Ph.d。儿科,病理学和人类遗传学系芝加哥大学900 East 57 The Street,KCBD Room 5240,LB1芝加哥,伊利诺伊州60637电话:773/702-2486 burnickatureko@uchicago..edu
背景:识别预测免疫疗法功效的生物标志物并发现联合疗法的新靶标是改善膀胱癌(BLCA)患者预后的关键要素。方法:首先,我们使用来自多个公共数据库的数据探索了正常和Pan-Cancer组织中TBX3的表达模式以及TBX3与免疫微环境之间的相关性。然后,我们组合了各种技术,包括大量RNA测序,单细胞RNA测序,高通量细胞因子阵列,功能实验,Procartaplex多重免疫测定和组织全景组织量化测定,以证明TBX3将Immunosupsporcement tamorsument(bla)塑造为bla s inrosement(bla)。结果:我们将TBX3确定为与BLCA中的免疫抑制微环境相关的关键因素。我们发现TBX3主要在恶性细胞中表达,其中TBX3高肿瘤细胞增加了TGFβ1的分泌,从而促进了与癌症相关的成纤维细胞(CAF)浸润,从而形成了一种免疫抗抑制性的微节流。我们进一步证明,TBX3通过与TGFβ1启动子结合来增强TGFβ1的表达,并阻止TGFβ1抵消TBX3的免疫抑制作用。此外,TBX3通过降低GZMB + CD8 + T细胞的比例来降低CD8 + T细胞的杀菌效率,并敲击TBX3与抗PD-1处理相结合的TBX3增加了CD8 + T细胞的浸润增加了VIVO中的CD8 + T细胞浸润和降低CAF。最后,我们发现TBX3预测了现实世界中免疫疗法队列和多个公共队列中的免疫疗法功效。我们还验证了TBX3 +恶性细胞与CD8 + T细胞之间的反比关系以及组织微阵列中与CAF的正相关关系。结论:总而言之,TBX3通过诱导免疫抑制微环境促进BLCA的进展和免疫疗法抗性,而靶向TBX3可以增强BLCA免疫疗法的功效。
背景。胎盘是一种瞬态器官,在怀孕期间形成以支持胎儿发育并调节影响慢性疾病风险的环境线索的暴露。胎盘在许多方面支持胎儿发育,包括促进营养和氧气交换,去除有害废物产品,产生关键的激素(例如人类绒毛膜促性腺激素)以及提供免疫保护。这些功能在很大程度上是由被称为合胞素细胞和额外滋养细胞细胞的终末分化的滋养细胞执行的。尽管合成肌细胞细胞和跨性滋养细胞细胞的重要性,但仍不清楚它们如何专门支持最佳胎儿发育。目标。使用功能方法丧失来确定合成肌细胞细胞谱系发育的转录调节因子。方法。候选转录因子(TBX3,VGLL3和ATF3)使用慢病毒介导的短发蛋白RNA(SHTBX3,SHTBX3,SHVGLL3或SHATF3)使用胞质衍生的人滋养细胞干细胞中击倒。将非特异性shRNA(SHCONTROL)用作对照。转导后,使用紫霉素选择细胞,并分别通过RT-QPCR和Western印迹在转录本和蛋白质水平上确认敲低效率。通过功能和转录组评估评估了转录因子敲低对滋养细胞干细胞分化为合成型肉芽细胞的影响。结果。结论。未来的方向。与用SHControl转导的细胞相比,SHTBX3和SHVGLL3的转导在合成型细胞细胞分化后导致形态异常。 可以使用滋养细胞干细胞中的功能方法丧失来评估候选转录调节剂对合成细胞细胞谱系发育的关键贡献。 初步结果表明,TBX3和VGLL3对于建立合成型细胞细胞谱系至关重要。 然而,需要更深入的表征来识别TBX3和VGLL3调节合成细胞成分的发育的分子机制。 未来的研究将包括完成剩余的候选转录因子,ATF3,全基因组评估(例如ATAC-SEQ)的shRNA敲低,以及所有SHRNA转换的其他功能输出,例如人类绒毛膜促性腺激素的产生。在合成型细胞细胞分化后导致形态异常。可以使用滋养细胞干细胞中的功能方法丧失来评估候选转录调节剂对合成细胞细胞谱系发育的关键贡献。初步结果表明,TBX3和VGLL3对于建立合成型细胞细胞谱系至关重要。然而,需要更深入的表征来识别TBX3和VGLL3调节合成细胞成分的发育的分子机制。未来的研究将包括完成剩余的候选转录因子,ATF3,全基因组评估(例如ATAC-SEQ)的shRNA敲低,以及所有SHRNA转换的其他功能输出,例如人类绒毛膜促性腺激素的产生。
摘要背景:随着诊断方法的不断进步,越来越多的早期非小细胞肺癌(NSCLC)患者被诊断出来。尽管许多学者投入了大量的努力来研究NSCLC的发病机制和预后,但其分子机制仍然没有得到很好的解释。方法:从基因表达综合(GEO)数据库中检索三个基因数据集GSE10072,GSE19188和GSE40791,筛选并鉴定差异表达基因(DEG)。然后,对筛选出的核心基因进行KEGG和GO功能富集分析、生存分析、风险分析和预后分析。我们构建了蛋白质-蛋白质相互作用(PPI)网络,并使用STRING数据库和Cytoscape软件。结果:生物学过程分析显示这些基因主要在细胞分裂和核分裂中富集。生存分析显示,CEP55(中心体蛋白55)、NMU(神经调节素U)、CAV1(Caveolin 1)、TBX3(T-box转录因子3)、FBLN1(fibulin 1)及SYNM(synemin)基因可能参与NSCLC的发生、发展、侵袭或转移(P < 0.05,logFC > 1)。预后分析及独立预后分析显示,这些枢纽基因相关mRNA的表达与NSCLC的预后风险相关。风险分析显示,所选的枢纽基因与NSCLC患者总生存时间密切相关。结论:本研究筛选和鉴定的DEGs和枢纽基因有助于我们了解NSCLC的分子机制,CEP55的表达影响NSCLC患者的生存和预后,并参与肿瘤的免疫反应。关键词:CEP55,微阵列,非小细胞肺癌,预后模型,肿瘤免疫反应
