摘要:为了检测生物分子,提出了基于介电调节的堆叠源沟槽闸门隧道效果晶体管(DM-SSTGTFET)的生物传感器。堆叠的源结构可以同时使状态电流较高,并且较低的状态电流较低。沟槽栅极结构将增加隧道区域和隧道概率。技术计算机辅助设计(TCAD)用于对拟议的结构化生物传感器的灵敏度研究。结果表明,DM-SSTGTFET生物传感器的当前灵敏度可以高达10 8,阈值电压灵敏度可以达到0.46 V,亚阈值秋千灵敏度可以达到0.8。由于其高灵敏度和低功耗,该提议的生物传感器具有很高的前景。
摘要在本文中,已经开发了不对称高架源隧道场效应晶体管(AES-TFET)的二维分析模型,以获得更好的隧道连接装置性能。基于设备物理学的分析建模是通过求解2-d poisson方程进行的。表面电势分布,电场变化和带对波段隧道(B2B)的速率已通过此数值建模研究。在我们提出的结构中,来源已升高(不同的2 nm至6 nm)以融合角效应。这可以通过薄隧道屏障进行载体运输,并具有控制的双极传导。这最终为N通道AES-TFET结构产生更好的源通道界面隧道。2-D数值设备模拟器(Silvaco TCAD)已用于模拟工作。模拟图形表示最终通过AES-TFET的分析建模验证。关键字AES-TFET·表面电势分布·电场变化·B2B隧道·TCAD·数值建模。1介绍纳米科学和纳米技术在纳米级设备中的出现,晶体管的物理大小已被绝对地缩小。通过遵循2022年摩尔的法律预测,微型化已达到其对金属氧化物施加效应晶体管(MOSFET)的极限[1]。在这方面,过去二十年中已经出现了各种扩展问题。短通道效应(SCE),排水诱导的屏障降低(DIBL)[2]。 为了克服这些问题,在新型MOSFET结构中正在进行持续的研究。短通道效应(SCE),排水诱导的屏障降低(DIBL)[2]。为了克服这些问题,在新型MOSFET结构中正在进行持续的研究。但是,在目前的情况下,在60mv/十年的MOSFET上有限的子阈值摇摆(SS)是研究人员的主要缺点。ritam dutta ritamdutta1986@gmail.com
1 维也纳技术大学微电子研究所 Christian Doppler 半导体器件和传感器多尺度过程建模实验室,Gußhausstraße 27-29/E360, 1040 Vienna, 奥地利;bobinac@iue.tuwien.ac.at (JB);reiter@iue.tuwien.ac.at (TR) 2 维也纳技术大学微电子研究所,Gußhausstraße 27-29/E360, 1040 Vienna, 奥地利;piso@iue.tuwien.ac.at (JP);klemenschits@iue.tuwien.ac.at (XK) 3 Global TCAD Solutions GmbH,Bösendorferstraße 1, Stiege 1, Top12, 1010 Vienna, 奥地利;o.baumgartner@globaltcad.com (OB); z.stanojevic@globaltcad.com (ZS);g.strof@globaltcad.com (GS);m.karner@globaltcad.com (MK) * 通信地址:filipovic@iue.tuwien.ac.at;电话:+43-1-58801-36036 † 本文是我们发表在 2022 年 9 月 21 日至 23 日在希腊科孚岛举行的第四届微电子器件和技术国际会议 (MicDAT) 论文集上的论文的扩展版本。
在第二部分中,我们描述了 EEPROM 模拟结构并提供了校准方法,从而得出与实验结果高度一致的预测编程窗口。第三部分重点介绍耐久性,即在两种编程状态不再可区分之前可以承受的写入/擦除循环次数。通过在隧道体氧化物中插入负捕获电荷,可以重现实验编程窗口关闭。为了支持这种方法,我们表明总捕获电荷密度遵循常用的幂律 [6]。作为实际应用,我们建议使用此预测 TCAD 模型大幅缩短实验循环测试时间。最后,在第四部分中,我们展示了如何扩展此模型以包括高温对编程窗口关闭的影响。
2 意法半导体技术研发部,意大利阿格拉泰布里安扎 摘要 — 热载流子应力引起的性能退化是功率 LDMOS 晶体管可靠性的关键问题。对于 p 沟道 LDMOS 来说更是如此,因为与 n 沟道 LDMOS 不同,多数载流子和少数载流子都对器件可靠性起着根本性的作用。本文深入研究了新一代 BCD 集成 p 沟道 LDMOS 中热载流子应力引起的微观机制。彻底分析了竞争电子和空穴捕获机制对导通电阻漂移的影响。为此,据我们所知,我们首次使用了包括玻尔兹曼传输方程的确定性解和微观性能退化机制在内的 TCAD 模拟。对性能退化源和动态的深入了解将为未来的器件优化提供相关基础。
载流子倍增因子的特性是设计坚固可靠的功率半导体器件以及评估其对地面宇宙辐射引起故障的敏感性的关键问题。本文提出了一种低温恒温装置,以将使用来自 Am 241 放射源的软伽马辐射的非侵入式电荷谱技术应用于广泛的 Si 和 SiC 器件。本文提供了一种关系,将液氮温度下测得的倍增因子转换为环境温度下测得的倍增因子。本文提出了一种专用的模拟方案,将 TCAD 和 Monte Carlo 工具结合起来,以预测收集到的电荷的光谱并定位倍增因子的热点。最后,在强调了电荷倍增因子与地面宇宙辐射下的功率器件故障率之间的相关性之后,建议将本技术作为评估安全操作区的补充方法。
摘要:航空航天应用中使用的微电子电路在辐射极其强烈的环境中工作,极有可能发生单粒子翻转 (SEU)。静态随机存取存储器 (SRAM) 是这些电路中最容易受到影响的,因为它占据了最近的片上系统 (SoC) 的很大一部分区域,并且还经常存储重要数据。因此,保持与 SEU 相关的数据完整性已成为 SRAM 位单元设计的主要要求。与 CMOS 器件相比,在 SRAM 单元中使用 FinFET 器件可以提供更高的抗辐射能力。在这项工作中,我们使用 TCAD 模拟分析了 SEU 对三种不同的基于 FinFET 的 6T 位单元配置的影响,其中访问和下拉晶体管中的鳍片数量不同。我们分析了 90 度和 60 度角下 SEU 的影响。
摘要:本文介绍了使用不同高介电常数 (高 k) 栅极介电材料的双栅极 (DG) 和栅极环绕纳米线 (GAA) MOSFET 的电气行为。为了研究高 k 介电材料对 DG 和 GAA 的影响,使用 Atlas Silvaco TCAD 工具模拟器件并确定电气特性。本研究选择的高 k 材料是氮化硅 (Si3N4)、氧化铝 (Al2O3)、氧化锆 (ZrO2) 和氧化铪 (HfO2)。栅极介电材料在设计新型高性能纳米级电气器件方面发挥了重要作用。可以观察到,当接近更高的介电常数值时,导通电流增加,而亚阈值斜率 (SS) 阈值电压 (Vth) 和漏电流减少。可以观察到,与其他模拟介电材料相比,HfO2 对 DG 和 GAA MOSFET 都表现出最佳性能。
摘要已开发了不对称扩展源隧道场效应晶体管(AES-TFET)的二维分析模型,以获得更好的设备性能。已通过求解2-D Poisson的方程来分析并执行所提出的设备模型。表面电势分布,电场变化和带对频带隧道(BTBT)速率已通过此数值建模研究。TFET新颖结构的源区域已扩展(不同的2 nm至6 nm),以结合角效应,从而通过薄薄的隧道屏障进行了BTBT,并具有受控的双极传导。这最终为N通道AES-TFET产生了更好的源通道接口隧道。2-D数值设备模拟器(Silvaco TCAD)已用于模拟工作。最终通过AES-TFET的分析建模来验证模拟工作。更好的是,我关闭和切换比是从这个新颖的TFET结构中获得的。
我致力于开发由Nexperia Hamburg生产的硅受控整流器(SCRS),以进行ESD保护。我的工作是用Synopsys sentaurus tcad模拟设备,并用Tim(瞬态干涉量学映射),TLP(传输线脉冲),EMMI(发射显微镜)和ESD/Essd/sugerve-sumpry-sinusoidal脉冲来促进ESD保护设备和电路的设计,以满足ESD的设计,并符合ESD ESD的设计。我在维也纳技术大学(TU WIEN)的Dionyz Pogany教授的监督下,并与Nexperia Hamburg的Guido Notermans,Steffen Holland,Hans-Martin-Ritter和Vasantha Kumar合作。我根据这些研究写了我的博士学位论文。与我写的一篇论文中,我在第41届EOS/ESD年度研讨会(美国加利福尼亚州河滨)获得了最佳学生纸奖。