在垂直旋转的大型MOSFET上形成了一个铃声,其浓缩缸充当源,门和排水区域。通过将轻微掺杂的区域集成到常规的铃声结构中,可以设计三种不同类型的LDD植入铃声,其中植入位置定义了每种类型。如果仅将LDD植入源侧,则会产生SLDD铃声,并且仅将LDD植入排水侧,则会导致DLDD铃声。最后,在排水管和源侧植入LDD时,它形成了LDD铃声结构。使用3D TCAD模拟评估重离子辐射对三种不同类型的LDD铃声结构的影响,并将其与正常入射率下对常规铃声结构的影响进行比较。离子打击的位置,入射角以及所得的瞬态电流和收集的电荷都会影响设备的灵敏度,可用于识别其脆弱区域。已经发现,在源和排水侧植入LDD的铃声结构对辐射诱导的损坏更具弹性,因为它表现出98.271 FC的较低收集费用与常规铃声(106.768 fc)相比,SLDD(101.768 fc),SLDD Ringfet(101.549 fc)和DLD Ringfet(100 fc)(100 fc)(100)。 MEV/(mg/cm²)。此外,与其他两个LDD结构和常规铃声结构相比,LDD植入的铃声表现出优异的I ON /I OFF比率。
对正在进行的气候变化的认识不断提高,可以加速电能系统从化石燃料的电源转变为具有可再生能源的大部分地区的系统。此外,网格基础设施需要增援才能应对增加的电能需求。灵活的交流传输系统(事实)和高压直流(HVDC)传输系统允许更高的网格容量,在长距离内进行有效的传输以及海底电能传输。e孔的电池和洲际网格连接需要有效的亚地区。可以预测,使用基于SI基于SI基于SI基于SI的系统的系统相比,相比之下,利用基于SIC的半导体设备的基本电力电子构建块(PEBB)将提供转换器系统(例如,串联连接的设备数量减少,较低的连接系统,较低的能源损耗,较低的冷却脚印和较小的电台脚印)相比。本论文的主要目的是设计,评估和确定适合大功率应用的高压SIC设备的性能,需求和局限性。已经通过二维数值模拟和实验来研究SIC半导体设备的特性,以评估高功率应用中的适用性。一组校准的技术计算机辅助设计(TCAD)仿真模型被用作估算SIC销钉二极管,SIC绝缘栅极双极晶体管(IGBTS)和SIC GATE Turn-Oi虫(GTO)晶状体的性能的基础。评估静态和动态设备的性能以及相关的门驾驶员需求和Snubber设计要求。使用设备层结构,设备处理参数的物理参数以及使用混合模式仿真来研究设备的特性,这些特征是为设备性能可预测性提供了广泛数据的。此外,证明了10 kV,100 a sic金属氧化物半导体效应晶体管(MOSFET)功率模块的实验表征,并与SI对应物相对。研究了20、30、40和50 kV设备的连接终止扩展(JTE)设计方面,其中使用结果用于预测每个阻断电压类别的活动面积比。此外,TCAD模拟得出了关键操作条件(例如动态雪崩和电流信剂)的极限,这表明关键操作点的显着高于基于SI的对应物。在1 GW,640 kV,模块化多级转换器(MMC)基于基于的HVDC系统的应用程序案例中,大范围仿真数据已用于基于基准的SIC设备。与最先进的SI BI-MODE绝缘门晶体管(BIGTS)相比,通过采用SIC设备配置(BIGTS),通过采用SIC设备配置来表示能量损失减少到一半。通过降低系统复杂性,控制硬件,电缆和纤维(由于PEBB的量较低),SIC Converter Design通过降低系统复杂性,控制硬件,电缆和纤维来,与现有SI基于SI基的高功率模块化多级转换器的有希望的替代品。,与现有SI基于SI基的高功率模块化多级转换器的有希望的替代品。
全学期课件 Synopsys 为微电子设计和 EDA 学士和硕士课程提供 130 多门全学期课程。每门全学期课程包含约 15 周的材料,包括教学大纲、讲座、实验室、家庭作业和考试。 研讨会和讲座 Synopsys 还提供 18 个课程支持模块,这些模块长度不一,并且包含比全学期课件更多的 Synopsys 工具培训材料。研讨会和额外讲座涵盖实施、验证和 TCAD 等主题。 简短讲座和实验室 此外,我们的课程还包括 27 个简短讲座和实验室,涵盖电路仿真、低功耗设计、OpenSPARC 等主题。每个简短讲座和实验室都会讨论和应用 Synopsys 工具,以便全面、实际地理解这些概念。 Synopsys 课程顾问委员会 Synopsys 课程顾问委员会是由一群学术专家组成的,他们共同努力为 Synopsys 大学计划成员开发新的微电子设计课件。除了慷慨地帮助创建和分享他们自己的一些材料外,董事会成员还为 Synopsys 开发的课件提供宝贵的评论和意见,并为我们课程的整体内容和方向做出贡献。要了解有关 Synopsys 课程咨询委员会的更多信息,请访问:www.synopsys.com/Community/UniversityProgram/Pages/CurriculaBoard
氧化物半导体重新引起了人们对用于单片三维 (3D) 集成的互补金属氧化物半导体 (CMOS) 后端 (BEOL) 兼容器件的兴趣。为了获得高质量的氧化物/半导体界面和体半导体,提高氧化物半导体晶体管的性能至关重要。据报道,原子层沉积 (ALD) 氧化铟 (In 2 O 3 ) 具有优异的性能,例如高驱动电流、高迁移率、陡亚阈值斜率和超薄沟道。在本文中,使用 C – V 和电导方法系统地研究了 ALD In 2 O 3 晶体管的 MOS 栅极堆栈中的界面和体陷阱。从 C – V 测量中的积累电容直接获得了 0.93 nm 的低 EOT,表明高质量的栅极氧化物和氧化物/半导体界面。通过 TCAD 对 C – V 和 G – V 特性的模拟,证实了 In 2 O 3 块体中亚带隙能级的缺陷是造成 GP / ω 与 ω 曲线中电导峰的原因。从 C – V 测量中提取了 1×10 20 /cm 3 的高 n 型掺杂。使用电导方法实现了 3.3×10 20 cm − 3 eV − 1 的高亚带隙态密度 (DOS),这有助于实现高 n 型掺杂和高电子密度。高 n 型掺杂进一步证实了通道厚度缩放的能力,因为电荷中性水平在导带内部深度对齐。
近年来,随着半导体技术进入10nm以下技术节点,短沟道效应(SCE)和功耗耗散问题成为场效应晶体管进一步小型化面临的巨大挑战,需要采取强制性措施予以解决。从3nm技术节点开始,环绕栅极结构提高的SCE抑制能力使环绕栅极场效应晶体管登上了历史舞台。本文展示了双栅极纳米管环绕栅极场效应晶体管(DG NT GAAFET)的超强静电控制能力,并与具有相同器件参数设计的纳米管(NT GAAFET)和纳米线环绕栅极场效应晶体管(NW GAAFET)进行了比较。与NT GAAFET和NW GAAFET相比,DG NT GAAFET的I on 分别提升了62%和57%。此外,由于静电控制的增强,DG NT GAAFET 中的 SCE 得到了明显抑制,这可以通过改善 I off 、SS 和 I on /I off 比来证明。另一方面,NT GAAFET 的 I on 与 NW GAA-FET 相当,而与 NW GAA-FET 相比,它的 I off 小 1 个数量级,SS 小近 2 倍,体现了纳米管通道结构的优越性。最后,通过 TCAD 模拟研究验证了纳米管通道结构,特别是双栅极纳米管结构对 L g 缩放的稳健性。关键词:双栅极,纳米管,纳米线,短沟道效应,功耗耗散。
摘要:本文利用ATLAS TCAD器件模拟器从模拟、RF性能的角度探讨了环绕栅极无结渐变通道 (SJLGC) MOSFET 的潜在优势。系统地研究了横向渐变通道对电位、电场、载流子速度、通道能带的影响。本研究主要强调了 SJLGC MOSFET 的优越性能,表现出更高的漏极电流 (ID )、跨导 (gm )、截止频率 (f T )、最大振荡频率 (f max )、临界频率 (f K )。由于通道渐变的影响,SJLGC MOSFET 的漏极电流提高了 10.03%。SJLGC MOSFET 的 f T、f max 和 f K 分别提高了 45%、29% 和 18%,表现出更好的 RF 性能。 SJLGC MOSFET 相对于 SJL MOSFET 的优势进一步得到阐明,其固有电压增益 (gm / g ds ) 提高了 74%,表明其在亚阈值区域具有更好的应用。但在亚阈值区域,SJLGC MOSFET 的跨导产生因子小于 SJL MOSFET。由于较低的栅极间电容 (C GG ) 的影响,SJLGC MOSFET 的固有栅极延迟 (ζ D ) 与 SJL MOSFET 相比较小,表明其数字开关应用更好。模拟结果表明,SJLGC MOSFET 可以成为下一代 RF 电路的有力竞争者,该电路涵盖了 RF 频谱中的广泛工作频率。
编程语言:VERILOG、VHDL 逻辑模拟器(前端):XILINX VIVADO 电路模拟器(后端):VIRTUOSO WITH SPECTRE(Cadence)CUSTOM COMPILOR HSPICE(Synopsys)PYXIS WITH ELDO(Mentor Graphics)布局分析仪(后端):使用 ASSURA 的 DRC/LVS 和使用 QUANTUS 的 RCX(Cadence)使用 IC VALIDATOR 和 HERCULES 的 DRC/LVS/RCX(Synopsys)使用 CALIBRE 的 DRC/LVS/RCX(Mentor Graphics)专业服务:期刊审稿人:INTEGRATION、THE VLSI JOURNAL、ELSEVIER IEEE TRANSACTIONS ON CAD(TCAD)IEEE TRANSACTIONS ON NANOTECHNOLOGY IEEE CONSUMER ELECTRONICS MAGAZINE MICROELECTRONICS JOURNAL, ELSEVIER JCSC、世界科学国际。 J. ELECTRONICS,TAYLOR & FRANCIS 印度纯物理与应用物理杂志 低功耗电子杂志,ASP JMSTE,欧亚半导体科学与技术,IOP 应用计算与信息学,ELSEVIER 会议组织者/审阅者: IFSA MicDAT – 2018,西班牙巴塞罗那 IEEE ICEECCOT-2018,印度迈苏鲁 IEEE INDICON – 2018,印度 IIT ROORKEE IEEE ICCE – 2018,美国拉斯维加斯 IEEE iNIS/iSES-2016/17/18,印度海得拉巴 IEEE CICT-2017,印度瓜廖尔 IEEE IESC – 2017,印度西隆 IEEE ICEECCOT-2017,印度迈苏鲁 IEEE ICECS – 2016,法国摩纳哥 IEEE MWSCAS-2016,阿联酋阿布扎比 IEEE RAECS-2015,印度昌迪加尔 SPRINGER IC3T-2015,海得拉巴 IEEE ICIIC-2015,印度浦那 IEEE ICACCE-2015,印度德拉敦 会员资格:
摘要:在本文中,全系统地研究了批量SI底物上垂直堆叠的水平栅极全面(GAA)Si Nanosheet(NS)晶体管的优化。首先优化了NS通道的释放过程以实现均匀的设备结构。对于具有不同GESI厚度(5 nm,10 nm和20 nm)或退火温度(≤900°C)的GESI/SI堆栈样品,GESI/SI堆栈样品的GESI与Si层的选择性湿法超过100:1。此外,通过实验和仿真仔细研究了地下平面(GP)掺杂对改善设备电气特性的影响。随着GP掺杂剂量的增加,N型设备的子阈值特征得到了极大的改善。然而,最初改善了P型设备,然后随着GP掺杂剂量的增加而恶化,它们证明了最佳的电气特性,GP掺杂浓度约为1×10 18 cm -3,这也通过技术计算机辅助设计(TCAD)模拟结果证实。最后,首先在散装基板上制造了4个具有6 nm厚度和宽度30 nm的GAA SI NS通道,并且堆叠的GAA SI NS设备的性能达到了较大的I ON/I ON/I OFF率(3.15×10 5)(3.15×10 5)和SubThreshrold Swings Swings(Subthresshord Swings(ss ss s)(ss s)(71)(71)(71)(71)(71)和较小的值。通过优化寄生通道和装置结构的抑制,漏排水引起的屏障降低(DIBL S)(9(n)/22(p)mV/v)。
ANITA 来自厚靶的类大气中子 CAL 控制轴向寿命 CIA 电流诱导雪崩 DN 深 N 缓冲层 DUT 被测设备 FEM 有限元法 FIT 及时失效 FWD 续流二极管 IC 集成电路 IGBT 绝缘栅双极晶体管 LANSCE 洛斯阿拉莫斯中子科学中心 LET 线性能量传递 MCNP 蒙特卡罗 N 粒子 MOSFET 金属氧化物半导体场效应晶体管 MTTF 平均故障时间 NPC 中性点钳位 NPT 非击穿 NYC 纽约市 PID 比例 – 积分 – 导数 PSI 保罗谢尔研究所 PT 击穿 PWM 脉冲宽度调制 QARM Qinetic 大气辐射模型 RCNP 核物理研究中心 SEB 单粒子烧毁 TCAD 技术计算机辅助设计 E av 空间平均电场 P f 总设备故障率 P lf 局部设备部分故障率 RB 体区扩展电阻 T 0 温度常数 ti 故障时间 T j 结温 T SUM 器件通量积数量 V aval 雪崩电压 V CE 集电极-发射极电压 V DC 直流电压 V DS 漏源电压 Δ fi 故障通量 A 面积 E 电场 h 高度 i 故障事件总和 r 器件故障数量 Si 硅 SiC 碳化硅 ε 介电常数 λ 故障时间 ρ 净电荷密度 Ω 器件体积
OPNAVINST 1750.3B N17 2024 年 1 月 31 日 OPNAV 指令 1750.3B 来自:海军作战部长 主题:对受虐待家属的过渡补偿 参考:(a) DoD 7000.14-R,国防部财务管理条例,第 7B 卷 (b) DoD 2019 年 9 月 23 日指令 1342.24 (c) ASN (M&RA) 备忘录,《对受虐待家属过渡补偿的授权委托》,145 年 4 月 21 日(NOTAL) (d) DoD 2020 年 5 月 28 日指令 6025.23 (e) 10 USC 1. 目的。规定可提供给因受虐家属虐待而退役的海军成员家属的每月受虐家属过渡补偿 (TCAD) 福利的扩大程序,并实施参考 (a) 至 (e) 的要求。本指示是完整修订版,应全部审查。主要更改包括更新标准持续时间和根据受害者年龄而定的时间限制。2. 取消。OPNAVINST 1750.3A。3. 范围和适用性。本指示适用于现役超过 30 天的海军成员,并且:a. 因虐待家属罪被定罪,导致该成员根据军事法庭的判决脱离现役。b. 因虐待家属罪被定罪,导致该成员根据军事法庭的判决丧失所有工资和津贴或依法丧失所有工资和津贴。c。自愿或非自愿地因行政原因脱离现役,脱离的依据包括受抚养人虐待罪。d. 犯有受抚养人虐待罪,但因符合特殊资格要求的另一项罪行而被行政脱离。