摘要使用T细胞探手(TCE)来治疗实体瘤是有挑战性的,并且由于较大的靶向上,肿瘤的毒性较低,由于健康组织中靶抗原的低水平抗原表达,因此有狭窄的治疗窗口受到限制。在这里,我们描述了TNB-928B,这是一种完全人类的TCE,它具有叶酸受体α(FRα)的二价结合臂,以选择性地靶向FRα过表达的肿瘤细胞,同时避免了FRα表达较低的细胞的裂解。FRα结合臂的二价设计赋予肿瘤选择性,这是由于低亲和力但与高FRα抗原密度细胞的高持续结合。TNB-928B在高FRα表达细胞上诱导优先效应T细胞激活,增殖和选择性细胞毒性活性,同时保留低FRα表达细胞。另外,与含有OKT3的阳性对照TCE相比,TNB-928B诱导最小的细胞因子释放。此外,TNB-928B使用内源性T细胞和体内稳健的肿瘤清除表现出大量的离体肿瘤细胞裂解,在卵巢癌小鼠模型中促进了T细胞浸润和抗肿瘤活性。TNB-928B表现出类似于常规抗体的药代动力学,预计可以在人类中有利地给药。TNB-928B是一种新型TCE,具有增强的安全性和特异性,可治疗卵巢癌。TNB-928B是一种新型TCE,具有增强的安全性和特异性,可治疗卵巢癌。
摘要:使用高温固体循环实施电力充电热化学能量存储(TCE)将通过使可变可再生能源(VRE)的吸收及其转换为可调度的热量和功率来使能源系统受益。使用瑞典案例研究,本文介绍了TCE集成地区供暖(DH)生产的过程,评估其技术适用性,并讨论了一些实际含义和其他实施方案。针对九种特定方案计算了带有铁的氧化还原回路的生物质植物的质量和能量流,这些氧化还原环的质量和能量流是在发电和价格上有所不同的九种特定情况。此外,还研究了两种类型的电解器(低温和高温版本)。结果表明,对于瑞典案件,提出的方案在技术上是可行的,能够通过使用现有的DH植物来覆盖国家DH需求,估计工艺能量效率(电力供热)为90%。结果还表明,对于整个瑞典DH层中的恢复,中间场景所需的铁的库存约为2.8吨,该中间场景分别代表国家储量的0.3%和11.0%,分别为国家行业的年度冶金生产率。除了可调节热量外,该过程还会产生大量的非匹配热量,尤其是对于使用低温电解器的情况。这种增加的生成能力允许该过程覆盖热量需求,同时降低了本文计算的充电侧的最大容量。
集中太阳能(CSP)和钙环(CAL)之间的整合正在考虑在可再生能源的大股份的角度考虑,以平滑不可匹配的能量输入的可变性。这项研究的范围是通过在适用于CAL-CSP集成的现实过程条件下在流化床中进行专门的实验运动来研究热化学能量储存(TCE)的CAL过程。通过测量沿迭代的钙化/碳化循环的Ca碳化程度,已经评估了基于石灰石的吸附剂的化学失活,这与转换选定阶段的物理化学炭化相关。经过审查的特性是层粒子的分布,块状密度以及床固体的粒径,密度和孔隙率。也评估了能源储能密度的可达到的值。实验运动的一个了不起的发现是在与二氧化硅砂一起加工时,石灰石的显着停用了。在过程温度下,CAO与二氧化硅砂成分的化学相互作用已被仔细检查,以造成反应性CAO对CO 2摄取的损失。颗粒密度数据的后处理以及N 2入口的孔隙法分析以及定量和定性XRD分析,这表明沙/石灰相互作用可促进总和反应性吸附的孔隙率的强烈降低,而反应性则是反应性的。基于密度的分类,用于评估碳化步骤后分离和未转化的石灰石颗粒,以提高过程效率的目的,通过避免通过工厂的未反应颗粒的流循环流循环。为此,在相关过程温度下每个反应步骤后,已经测量了钙化颗粒和碳酸颗粒的最小流体速度。