阿尔茨海默氏病(AD)是一种常见的神经退行性疾病,具有复杂的病原体,批准的药物只能缓解一段时间内AD的症状。传统中药(TCM)包含多种可以同时对多个靶标作用的活性成分。在本文中,提出了一种基于熵和随机步行的新型算法,并提出了异质网络(RWRHE)的重新启动,用于预测AD的活性成分,并筛选出AD的有效TCMS。首先,收集了CNKI(中国国家知识互联网)中包含20种来自AD药物评论的20种草药的TCM化合物,从不同的数据库中检索出它们的活跃成分和靶标。然后,分别基于不同方面和熵权重构建活性成分和目标的全面相似性网络。通过整合已知的活跃成分 - 目标关联信息和两个全面的相似性网络来构建全面的异质网络。随后,在异质网络上应用双随机步行,以预测主动成分 - 目标靶向关联。与AD相关的TAR-获取作为种子节点,在目标相似性网络上进行随机步行以预测Ad-Target关联,并推断和评分AD活性成分的关联。有效的草药和AD化合物根据其活性成分的分数筛选出来。通过机器学习和生物源头测量的结果表明,RWRHE算法达到了更好的预测准确性,前15位的活性成分可以作为预防和治疗AD,Danshen,Danshen,Gouteng和Chaihu的多目标药物,作为用于AD的有效TCM的有效TCMS,用于ADED ADED ADEND ADEDID ADED AD ADEDIDEND。
年龄相关的黄斑变性(AMD)的发病机理(一种退化性视网膜病)尚不清楚。抗血管内皮生长因子药物,抗氧化剂,眼底激光,光动力疗法和跨胸膜变暖已被证明有效缓解症状有效;但是,这些干预措施无法阻止或逆转AMD。越来越多的证据表明,AMD风险与肠道微生物群(GM)的组成,丰度和多样性的变化有关。通过GM代谢产物(包括脂多糖,氧甲醇,短链脂肪酸(SCFA)和胆汁酸(BAS)(BAS)的多种信号通路激活多种信号通路。传统中药(TCM)以多组分和多目标优势而闻名,可以通过改变GM组成并调节某些物质的水平,例如脂多糖,减少氧甲醇,减少SCFA和BA含量来帮助治疗AMD。本评论探讨了通用汽车和AMD之间的相关性以及两者的干预措施,以提供有关用TCM处理AMD的新观点。
摘要:心力衰竭(HF)是一种复杂的临床综合征,代表心血管疾病的晚期阶段,其特征是心脏的收缩和舒张功能障碍。尽管HF治疗药物进行了持续更新,但发病率和死亡率仍然很高,需要对新的治疗靶标进行持续的探索。Adenosine monophosphate-activated protein kinase (AMPK) is the serine/ threonine protein kinase which responds to adenosine monophosphate (AMP) levels.Activation of AMPK shifts cellular metabolic patterns from synthesis to catabolism, enhancing energy metabolism in pathological conditions such as inflammation, ischemia, obesity, and aging.许多研究已将AMPK鉴定为HF治疗的重要靶点,其草药单体/提取物以及影响关键信号因子,包括雷帕霉素靶向蛋白(MTOR),沉默调节蛋白1(SIRT1),核转录因子E2相关因子2(NRF2)(NRF2)(NRF2)(NRF2)(NRF2)(NRF2)(NRF2)(NRF2)(NF2)(NF-κB)(NF-κB)(NF-κB)(核转录因子E2)(SIRT 1),途径。此调节可以实现改善新陈代谢,自噬,减少氧化应激和心力衰竭治疗的炎症反应,并具有多目标,全面的作用和低毒性的优势,而传统中医(TCM)对AMPK途径进行了调节,以进行预测和一般研究方向,但在该领域的一般治疗方向,但AMPK途径的一般治疗方向,但AMPK途径的总体化是HH的一般性研究,但AMPK途径的总体化是概述的。缺乏。的目的是作为使用TCM诊断和治疗HF的参考和新药的开发。本文概述了AMPK信号通路对HF的影响的组成,调节和机制,以及当前对TCM调节AMPK途径HF预防和治疗的研究的摘要。关键字:AMPK信号通路,中药,心力衰竭,作用机理,评论
本文提出了一个方法论框架,用于在精确肿瘤学的背景下评估个性化的癌症治疗。框架将N-1-1试验与匹配的队列分析集成在一起。n-1-of-1试验根据个体患者特征优化药物选择和给药,而匹配的队列分析(使用倾向得分匹配)可以对个人和人群水平的治疗效果进行强有力的评估。这减少了选择偏见,并促进了治疗队列之间有意义的比较。这种综合策略桥梁桥梁个性化的护理和人口水平的证据,为推进个性化癌症疗法提供了可扩展的现实世界模型。虽然这种方法植根于西方医学研究方法,但它与“综合征分化和治疗”的传统中医(TCM)原理具有基本相似之处。这种一致性使其特别适合独立或组合评估西方和TCM方法。该框架允许将个性化方法整合到严格的研究方法中,从而将患者护理与人群级别的证据弥补(图1)。
糖尿病已在全球范围内成为一个重大的公共卫生问题,给全球卫生系统和人员带来了巨大负担。在所有患者组中,大部分患者是老年人,而其临床特征,致病过程和药物治疗方案与其他年龄的患者不同。尽管有多种疗法和技术可用,但仍有许多老年糖尿病患者患有不良的血糖控制,严重的并发症和药物不良影响,这对黄金年份的生活质量产生了负面影响。传统中药(TCM)已被广泛用于糖尿病的治疗,其相关的临床实践证实,它对缓解临床症状和缓解并发症的进展具有令人满意的作用。中草药及其活性成分被多个靶标和信号通路广泛使用,具有明显的临床优势。但是,由于老年糖尿病的特殊特征,很少有研究探索中医对老年糖尿病患者的干预。本研究回顾了有关临床特征,致病过程,治疗原理和TCM治疗的研究,希望为老年糖尿病的预防和管理策略提供新的观点。
1.用途 TOSCAN-D3000C是在东芝先进、成熟的配电自动化系统技术基础上,结合我国城市配电网系统特点,开发的一种完整、实用的配电自动化系统。TOSCAN-D3000C技术先进、功能成熟、可靠性高,适用于各种配电网系统。2.主要功能 � 配电网监控(SCADA) � 配电网设备管理 � 在线维护功能 � 在线仿真功能 � 与其他系统接口 � 配电故障处理及负荷决策转移 � 实时配电GIS � 报表系统 � 高级分析功能 3.主要特点 � 开放、分布式系统 系统基于开放、分布式结构,采用开放的LAN、WAN通讯控制协议,网络分布在UNIX工作站上处理客户机和服务器。� 系统采用主备方式,可靠性高 系统的服务器与工作站采用主备方式。组成系统的设备(TCM、TCR、RTU等)采用工业微处理器,可靠性高。� 系统结构良好,扩展方便 系统扩展方便,可根据用户要求增设工作站、TCM、TCR、RTU、PVS等。� 实时配电GIS
用于热存储的创新材料研究(相变材料,PCM或热化学材料,TCM)的主要目标是开发具有高容量的低损坏和紧凑型存储系统(明智的水位储存是基准)。如果要在应用程序中实施该存储,旨在提高其能源效率,除了技术/热性能和成本因素外,还需要在开发过程中考虑存储生产和操作的环境影响。到目前为止,一种整体开发方法,它考虑了用于与潜在能源节省的制造,运营和处置的主要能量,而创新的存储概念尚不存在。因此,我们正在介绍有关PCM和TCM对德国项目“ Speicher LCA”中材料和组件水平的环境影响的数据(Engl。“存储生命周期评估”)。评估表明,如果PCM与水相比可以在环境方面有益于环境,如果它们用于较小的有用温度差的应用(例如冷却)。在封闭的系统中使用实心吸附材料存储太阳热量似乎并不是环保的。其他场景假设可能重复使用未基因的材料,开放吸附存储和/或其他材料类(例如盐水合和液体吸附)的配置,将来会在将来研究
将突破性的闭环热存储概念推进到技术就绪水平 7 多循环稳定 TCM、紧凑系统、能源管理和接口 提供经济实惠、高度紧凑且可持续的解决方案,性能强大,集成在分散系统中。将紧凑存储与高效热泵效应 (COP > 10) 相结合,提供混合功能。通过热电系统的配置,为电网灵活性创造新的机会。
BP 在许多领域都具有广泛的应用,如耐腐蚀和耐热涂层 [4,5]、光催化剂和电催化剂 [6,7],以及热管理 [1] 和极紫外光学应用。 [8] 最近,BP 被认为是一种潜在的 p 型透明导电材料 (TCM)。 [9] 这是一个特别有趣的前景,因为在光学透明材料中获得高 p 型电导率仍然是一个尚未解决的挑战。 [10,11] 与其他 p 型 TCM 候选材料不同,多位作者报道了 BP 中的双极掺杂。 [3,5,9,12,13] 因此,BP 可能是具有 p 型和 n 型掺杂能力的透明材料的独特例子。BP 结晶于具有四面体配位的金刚石衍生的闪锌矿结构中。由于B和P之间的电负性差异很小,BP是共价固体,其能带结构与金刚石结构中的Si和C的能带结构非常相似。主要区别在于BP的基本间接带隙大小适中(≈2.0 eV)[14–16],这主要是由于键长适中。虽然该带隙对应于可见光,但BP的直接带隙要宽得多,位于紫外区(≈4.3 eV)。[15–17]预计BP在室温下的间接跃迁很弱[15],这是使BP薄膜足够透明以用于许多TCM应用的关键因素。例如,根据包括电子-声子耦合在内的第一性原理计算,100nm厚的BP膜预计会吸收微不足道的红黄光和不到10%的紫光。 [15] 就电学性质而言,BP 具有由 p 轨道产生的高度分散的价带,从而确保较低的空穴有效质量(0.35 me)。[9] 与金刚石不同,BP 的价带顶位于相对于真空能级相对较浅的能量处。浅而分散的价带通常与高 p 型掺杂性相关,因为更容易形成未补偿的浅受体缺陷。[18,19]