2 24.053对象。arrêtde la cedh«Verein Klimaseniorinnen Schweiz et Autres c。 Suisse»https://www.parlament.ch/fr/ratsbetrieb/suche-curia-vista/geschaeft?附带= 20240053; 24.054对象。arrêtde la cedh«Verein Klimaseniorinnen Schweiz et Autres c。 Suisse»https://www.parlament.ch/fr/ratsbetrieb/suche-curia-vista/geschaeft?附带= 20240054(均为最后一次访问02 Janogy 2024)。3参见例如以下国内案件:Milieudefensie等。v。RoyalDutch Shell Plc;绿色和平组织西班牙,乐施会Intermón和生态学家Ención和Coordinadora de ngo para el desarrollo诉西班牙政府;芬兰自然保护协会和其他协会诉芬兰。 etthr案:Mullner诉奥地利;绿色和平E.V. 和其他人诉德国;绿色和平组织北欧和其他人诉挪威。 咨询意见:EFTA法院,挪威州诉绿色和平组织北欧,自然和挪威青年(E-18/24); ITLOS,关于气候变化和国际法的咨询意见,帕拉克法官单独的意见(最后一次访问14 Janogy 2025)。v。RoyalDutch Shell Plc;绿色和平组织西班牙,乐施会Intermón和生态学家Ención和Coordinadora de ngo para el desarrollo诉西班牙政府;芬兰自然保护协会和其他协会诉芬兰。etthr案:Mullner诉奥地利;绿色和平E.V.和其他人诉德国;绿色和平组织北欧和其他人诉挪威。咨询意见:EFTA法院,挪威州诉绿色和平组织北欧,自然和挪威青年(E-18/24); ITLOS,关于气候变化和国际法的咨询意见,帕拉克法官单独的意见(最后一次访问14 Janogy 2025)。
3 数据科学与定量生物学、Discovery Sciences、生物制药研发、阿斯利康、英国剑桥 4 细胞分析开发、Discovery Sciences、生物制药研发、阿斯利康、瑞典哥德堡 5 细胞工程、Discovery Sciences、生物制药研发、阿斯利康、瑞典哥德堡 6 Promega Corporation、美国威斯康星州麦迪逊 7 转化基因组学、Discovery Sciences、生物制药研发、阿斯利康、瑞典哥德堡 8 转化科学与实验医学、研究与早期开发、呼吸与免疫学 (R&I)、生物制药研发、阿斯利康、瑞典哥德堡 9 细胞生物学与免疫学、Discovery Sciences、生物制药研发、阿斯利康、英国剑桥 10 数据科学与定量生物学、Discovery Sciences、生物制药研发部,阿斯利康,瑞典哥德堡 11 化合物合成与管理,Discovery Sciences,生物制药研发部,阿斯利康,瑞典哥德堡 43150 12 分子人工智能,Discovery Sciences,生物制药研发部,阿斯利康,瑞典哥德堡 13 Discovery Sciences,生物制药研发部,阿斯利康,英国剑桥 14 早期 TDE 发现,肿瘤学研发部,阿斯利康,英国剑桥 * 通讯联系人:电子邮件:marcello.maresca@astrazeneca.com 通讯也可寄给 Sandra Wimberger。电子邮件:sandra.wimberger@astrazeneca.com
George K. Holbert,GS-12 Holbert 先生是第 81 训练支援中队教师发展飞行训练管理课程主任。Holbert 先生出生于密西西比州比洛克西,在密西西比州格尔夫波特长大。他于 1985 年毕业于格尔夫波特高中,后来搬到了密西西比州帕斯卡克里斯蒂安。1986 年,他就读于密西西比湾岸社区学院的酒店和餐厅管理课程。1988 年,他从密西西比湾岸社区学院毕业,获得副学士学位。1988 年,他开始在基斯勒空军基地工作,为餐饮设施的食品服务承包商工作,担任机上厨房的二等厨师。1990 年,Holbert 先生加入空军,担任第 81 维修中队的自动跟踪雷达系统专家,并一直担任该职务直到 1995 年。1995 年,他被任命为第 332 训练中队的电子原理教员。1999 年,他以参谋军士的身份离开空军,开始从事公务员职业。1999 年,Holbert 先生加入公务员队伍,担任 GS-09 教员,教授电子原理,随后调至第 81 训练支援中队教师发展飞行队,担任基础教员课程教员。他教授基础教员、教学系统开发、CDC 作家和技术作家原理课程。2014 年,他晋升为基础教练课程的教练主管。2018 年,他完成了特殊教育跨学科学士学位,并晋升为培训管理课程主任。2020 年,他升任培训经理/TDE 教职发展主管。自 2008 年以来,Holbert 先生一直担任凯斯勒空军基地密西西比州特殊奥林匹克运动会神经中枢委员会负责人。教育背景 1988 年,密西西比湾岸社区学院,酒店/餐厅管理副学士 1995 年,空军社区学院,电子系统技术副学士 1996 年,空军社区学院,技术与军事科学讲师副学士 2018 年,自由大学,特殊教育跨学科学士 任务 1.2020 年 1 月 - 至今,GS 12 培训经理/TDE 主管,第 81 培训支援中队,密西西比州基斯勒空军基地。2.2018 年 10 月 - 2020 年 1 月,GS 12 培训管理课程主任,第 81 培训支援中队,密西西比州基斯勒空军基地。3.2004 年 11 月 - 2018 年 10 月,GS 11教员主管教职发展,第 81 训练支援中队,密西西比州基斯勒空军基地。4.2000 年 5 月 – 2004 年 11 月,GS 9 教员教职发展,第 81 训练支援中队,密西西比州基斯勒空军基地。5.1999 年 4 月 – 2000 年 5 月,GS 9 教员电子原理,第 332 训练中队,密西西比州基斯勒空军基地。6.1995 年 11 月 – 1999 年 4 月,SSgt 教员电子原理,第 332 训练中队,密西西比州基斯勒空军基地。7.1990 年 4 月 – 1995 年 11 月,SrA 自动跟踪雷达专家,第 81 维护中队,密西西比州基斯勒空军基地。
新闻发布转移性癌症:靶向抗药性肿瘤的蛋白质如何成为新加坡更好结果的关键,2025年2月4日 - 癌症治疗的最大挑战之一是解决癌细胞适应和抗性的能力,从而降低了疗法的疗效,从而降低了疗法的能力。虽然诸如化学疗法或靶向疗法的疗法最初可能会收缩肿瘤,但它们通常在一段时间后失去效力。这种抗性通常出现在转移性肿瘤中,因为癌细胞可以以使其生存的方式发展,例如开发新的方式与彼此交流。寻求方法来帮助那些癌症不再对治疗做出反应的患者,来自新加坡国立大学(NUS医学)的Yong lin医学院的团队研究了如何通过癌细胞释放的微小颗粒(被称为肿瘤衍生的细胞外囊泡(TDES)(TDES))与周围的细胞和癌细胞诱导抗药性。由NUS癌症研究中心(N2CR)副主任Goh Boon Cher教授和来自N2CR的Shazib Pervaiz教授领导,该小组发现阻止了某种蛋白质SLC1A5,导致了对肺癌的更有效治疗。Goh教授说:“这一发现提供了一种应对癌症治疗中最大挑战之一的新方法:抵抗治疗。 发表在《 Theranostics》杂志上,该研究涉及使用161个血浆样本,这些样本是从103例不同阶段的肺癌患者获得的,以及来自国立大学医院和NCIS的58个健康个体。Goh教授说:“这一发现提供了一种应对癌症治疗中最大挑战之一的新方法:抵抗治疗。发表在《 Theranostics》杂志上,该研究涉及使用161个血浆样本,这些样本是从103例不同阶段的肺癌患者获得的,以及来自国立大学医院和NCIS的58个健康个体。通过靶向蛋白质,这使癌细胞在试图杀死它们时更容易生存,医生可以改善现有治疗方法,并为癌症停止反应的患者创建更多个性化的方法。” Goh教授还是NUS癌症科学研究所(CSI新加坡)的副主任,也是新加坡国立大学癌症研究所(NCIS)的血液学 - 肿瘤学高级顾问TDE,并在实验室中分析了它们的蛋白质水平。结果表明,与早期阶段敏感肿瘤相比,来自62例患者血浆样本的晚期治疗肿瘤中SLC1A5水平明显更高,其P值小于0.0001。这些表明TDE中的该蛋白质的高水平与对癌症治疗的耐药性的增加有关。蛋白质也是一种谷氨酰胺转运蛋白,有助于将谷氨酰胺移至细胞中,从而为它们提供生长和能量所需的营养,尤其是在快速分裂的癌细胞中。在实验室实验中,在TDES中使用药理学抑制剂或沉默SLC1A5阻断蛋白质的实验中,发现对癌细胞的治疗更有效。由CSI新加坡的合作者Eliza Fong助理教授,N.1 N.1卫生研究院和NUS设计和生物医学工程系的生物医学工程系的合作者领导,该实验表明,NUS的设计与工程学院的生物医学工程系表明,肿瘤对治疗的耐药性表现出了SLC1A5升高的治疗水平。作为谷氨酰胺为癌细胞提供能量,使其生长和对治疗的抵抗力,阻止其摄入量可以增强癌症治疗的有效性。
摘要:从Z10 Microcode的最新更新开始,以及ICSF,FMID HCR7770,IBM加密硬件的新支持,支持三种键。本文介绍了清晰键,安全键和受保护的键之间的基本差异,并且是对硬件如何为安全键提供额外保护的介绍。了解这三个区域之间的差异将有助于设计正确的加密解决方案并确定加密工作的硬件要求。加密是为了保护数据的过程。使用加密算法(一系列步骤)将数据拼写,该算法由密钥控制。键是输入算法的二进制数字序列。加密的安全性依赖于保持密钥的价值为秘密。在密码学中,必须确保所有对称密钥和公共/私钥对的私钥以保护数据。对于对称键,需要保护钥匙值,以便只有两个交换加密数据的双方才能知道键的值。DES,TDE和AES算法已发布,因此键提供了安全性,而不是算法。如果第三方可以访问密钥,则可以像预期的接收者一样轻松地恢复数据。对于非对称键,必须保护私钥,以便只有公共/私钥对的所有者才能访问该私钥。公共密钥可以并且将与将向键盘所有者发送加密数据的合作伙伴共享。安全的密钥硬件要求加载主密钥。在系统z加密环境中定义键为安全键时,该密钥将由另一个称为主键的密钥保护。IBM安全密钥硬件提供篡改感应和篡改响应环境,在攻击时,将对硬件进行归零并防止钥匙值受到损害。该主密钥存储在安全硬件中,用于保护操作密钥。硬件内(通过随机数生成器函数)生成安全密钥的清晰值,并在主密钥下进行加密。当安全密钥必须离开安全的硬件边界(要存储在数据集中)时,将密钥在主密钥下进行加密。因此,加密值存储,而不是密钥的清晰值。一段时间后,当需要恢复数据(解密)时,安全的键值将加载到安全的硬件中,在该硬件中将从主密钥中解密。然后将在安全硬件内使用原始键值,以解密数据。如果安全密钥存储在CKD中,并且主密钥更改,ICSF提供了重新启动安全键的能力;那就是将其从原始的主密钥中解密,然后在新的主密钥下重新加密它,所有这些都在安全硬件中,然后将其存储回新的CKD,现在与新的主密钥值相关联。当需要与合作伙伴共享时,也可以在密钥加密密钥或运输密钥下加密安全密钥。在这种情况下,当它留下硬件的安全边界时,它将在传输密钥(而不是主密钥)下进行加密。