测试食物(8只狗/食物)。一种常规的高质量狗食,含有动物的蛋白质作为对照食品(CON)。配制了两种柔韧性食品,可提供来自动物基蛋白的总蛋白质的12%,这些蛋白质与干酵母和豌豆蛋白(Flex-PEA)或大豆蛋白(Flex-Soy)的平衡。一种没有动物或大豆成分的素食食品,含有干酵母,玉米面筋粉和豌豆蛋白作为蛋白质来源(纯素食)。饮食的成分组成如表1所示。该研究的目的是评估这些食物对可口,可接受性,消化率,粪便质量和粪便微生物组的影响。这项研究的结果对于开发营养完整的宠物食品很有价值,并与当今宠物主人的不断发展的期望,健康方面的考虑和日益增长的生态意识相符。
技术纺织品 • 技术纺织品是为非美观目的而制造的纺织产品。 • 技术纺织品是“先进材料”,其技术性能和物理特性比颜色、图案和价格等特征更重要。该行业涵盖了广泛的材料、制造工艺和最终用途市场。 • 其增长和发展是由研发主导的行业和与其他行业的合作共同推动的。 • 它们用于汽车应用、医疗用途、作物保护、防护服等。 • 纺织技术是指“主要为其技术和性能特性而不是其美学或装饰特性而制造的纺织材料和产品”。 • 主要用于其性能或功能特性而不是其外观或美观的纺织品称为技术纺织品。 • 用于各种工业应用的工业织物也被归类为技术纺织品。 • 一些纺织学者还将绳索或防水布等成品以及其他产品的零件(如轮胎帘布或尿布覆盖材料)纳入技术纺织品的定义中。
摘要:网络化动态系统(NDS)长期以来一直受到研究者的关注。随着技术的发展,特别是通信和计算机的发展,NDS 的规模迅速增加。此外,一些新问题也随之出现,例如攻击预防、随机通信延迟/故障等。此外,人工智能领域近年来取得的巨大成功极大地刺激了具有大量节点的人工 NDS 的构建。然而,一些基本问题仍然具有挑战性,包括从测量中揭示 NDS 的结构、NDS 可控性/可观测性验证的计算效率条件等。在本次演讲中,我们将介绍一个大规模 NDS 模型,其中子系统通过其内部输出以任意方式连接,并且子系统可能具有不同的动态。给出了子系统交互全局可识别性的基于矩阵秩的必要充分条件,这导致了在存在一些先验信息的情况下关于 NDS 结构可识别性的几个结论。该矩阵还导致了无法仅从实验数据中区分的子系统交互集的明确描述。给出了确定频率的递归程序,在这些频率下系统频率响应能够唯一地确定 NDS 结构。还通过一些数值模拟揭示了“结构可识别度”的重要性,并讨论了其对模型预测能力和系统性能的影响。提出了两个指标分别用于衡量 NDS 结构的绝对和相对松弛度,并针对一些应用重要的情况推导出了它们的明确公式。
A 支付能力 8270 混凝土坝基础 8312 可访问性合规性与评估 8120 混凝土坝与混凝土结构检查 8130 酸性矿井排水 8313 混凝土坝、地震分析 8110 声学 8560 混凝土管道设计与调查 8140 行政记录管理 8270 混凝土修复、测试与技术 8530 航空摄影 8250 高性能混凝土 8530 骨料测试 8530 预制混凝土 8120 农业气象学 8250 状况评估、材料或结构 8530/8540 两栖动物研究与调查 8290 锥体渗透测试 (CPT) 8320 辅助服务监控 8440 建设成本估算与提案审查 8520 水生生物修复与系统 8290 建设成本趋势、指数 8520 含水层/溪流8320 施工地质测绘 8320 电弧闪光 8440 施工管理与合同进度安排 8510 建筑设计 8120 施工质量保证/材料测试 8530 建筑模型 8560 施工支持与检查 8510 竣工图/TSC 图 8322 消耗性使用 8210 大气/流域生态系统模型 8250 合同索赔咨询服务与管理 8510 AutoCAD 8322 控制系统分析与测试 8440 自动数据采集系统 8320 控制系统设计 8430 自动化、灌溉 8560 受控低强度材料 (CLSM) 8530 自动化、发电厂与发电控制 8450 输送系统自动化 8140 鸟类调查与研究 8290 输送机 8410 B 芯回收 8320 河岸与河床稳定化与河床物质采样 8240 腐蚀保护/监测 8540 水深测量 8560 土壤和水的腐蚀性测试 8540 电池测试 8450 成本分配效益与评估 8270 轴承冷却系统 8410 成本与效益 8270 生物防治 8560 起重机和提升机 8410 爆破要求 8312 关键路径法 (CPM) 计划 8510 内窥镜检查 8410 交叉排水研究 8250 借土区开发 8311/8320 截水墙 8313 借土、桥梁和建筑调查 8320 D 桥梁和建筑基础、地质分析 8320 大坝和潜水检查及潜水队 8130 桥梁 8150 大坝溃口建模 8560 预算和进度制定 建筑增建、改造、修复、拆除或改造 8010 (泥沙输送) 8240
上下文在2022年达成协议的GBF包括一个保护目标(目标3),以通过保护区和OECMS 1的结合,以保存至少30%的陆地,内陆水,海洋和沿海地区1,同时认识到土著和传统领土。内陆水域包括淡水2个生态系统,其中包括湖泊,河流,游泳池,沼泽和泥炭地。内陆水生物多样性是全球最受威胁的原因之一,由于多种原因,内陆水生态系统保护被确定为弯曲内陆水生物多样性损失曲线的关键途径。一般而言,缺乏专门用于通过受保护和保守的地区来保护内陆水生态系统的关注和资源(Abell等人。2017)。有机会扩大和加强可提供内陆节水结果的保护区和经合组织的贡献,并确保更多的势头,工具和资源能够利用有效的内陆节水。通过基于区域的保护措施通过基于区域的保护措施提供内陆水结果可能是复杂的设计和评估。例如,通过建造阻碍物种迁移的大坝和其他障碍,很容易散布河流,导致种群枯竭或生物多样性的丧失;防止分裂可能需要与陆地生态系统所需的干预措施不同的干预措施(例如,Santos等人。2013,Barbarossa等。 2020,Caldas等。 2023)。 2021)。 2024)。2013,Barbarossa等。2020,Caldas等。2023)。2021)。2024)。在蒙古,政府已经建立了工业排斥区,包括采矿区,在水体200米以内,以解释采矿对水体的直接和下游影响(Surenkhorloo等人(Surenkhorloo)这是内陆防水的复杂性质的一个例子,它延伸到干预的直接区域之外。OECM为带来更广泛的基于区域的保护机制的机会至关重要,因为一系列托管用途可以与内陆保护结果的提供兼容(请参见Moberg等人的更多示例。OECM框架有可能增加对正式保护区以外的事实上长期保护的认识和支持(CBD 2018)。实际上,大多数国家尚未将OECM上的数据提交到OECM(WD-OECM)(受保护的Planet 2024)的世界数据库。可以由政府,组织,土著人民或地方社区进行认同,报告,监测和加强。由于大多数国家目前正在开发识别和报告OECM的流程,因此很少有既定的例子可借鉴;结果,我们提供了基于管理目标的假设OECM示例,并推测到内陆节水结果的潜在有效性。