这项工作将调查使用不同人工智能方法的使用,并将利用珠宝[1,2]和V-uSphydro [3,4]模型来研究重型离子碰撞中的喷气修饰。
TEM Mill 的液氮系统在外壳内配备一个杜瓦瓶,该杜瓦瓶完全集成且互锁。杜瓦瓶位于操作员附近,方便取用。有两种杜瓦瓶可供选择:标准杜瓦瓶适用于离子研磨过程中需要 3 至 5 小时冷却的应用,或扩展杜瓦瓶适用于需要在低温条件下运行 18 小时以上的应用。温度会持续显示在触摸屏上。
TEM 是研究电子设备纳米级特征的重要工具。TEM 基于散射的对比度在确定材料的物理结构方面表现出色,并且通过 EDS 和 EELS 等光谱附件可以精确确定设备中原子的组成和排列。结合原位功能,TEM 可以精确映射设备在运行和缺陷形成过程中的物理结构变化。但是,在许多情况下,设备的功能或故障是小规模电子变化的结果,这些变化在变化成为病态之前不会呈现为可检测的物理信号。为了在 TEM 中检测这些电子变化,必须采用与电子结构直接相关的对比度的互补成像。在 TEM 中获得电子对比度的一项技术是电子束感应电流 (EBIC) 成像,其中由光束在样品中产生的电流在 STEM 中逐像素映射。自 20 世纪 60 年代以来 [1],EBIC 电流产生的“标准”模式是在局部电场中分离电子-空穴对 (EHP)。最近,展示了一种新的 EBIC 模式,其中电流由束流诱导二次电子 (SE) 发射在样品中产生的空穴产生[2]。这种 SE 发射 EBIC (SEEBIC) 模式不需要局部电场的存在,通常比标准 EBIC 的电流小得多,并且能够实现更高分辨率的成像[3]。在基于 TEM 的技术中,SEEBIC 独一无二,还能产生与样品中局部电导率直接相关的对比度[4],即使在操作设备中也是如此[5]。在这里,我们讨论了 STEM EBIC 电导率映射技术,并提供了它在被动成像和原位实验中的几个应用示例。图 1 显示了 SEEBIC 电阻映射的简单演示。该设备由一条 GeSbTe(GST)条带组成,该条带横跨两个在薄 SiN 膜上图案化的 TiN 电极。图 1 中的 STEM EBIC 图像包含标准 EBIC 和 SEEBIC 对比度。如图所示,当电子束入射到 TiN/GST 界面时,肖特基势垒处的电场将 EHP 分开,空穴在每个界面处朝 GST 移动,在连接到 EBIC 放大器的右侧电极上产生暗对比度,在接地的左侧电极上也产生暗对比度。在这些界面之外,SEEBIC 对比度与左侧(接地)电极的电阻成正比 [4]。靠近 EBIC 电极(即,与接地电极相比,EBIC 电极的电阻更小)的 SE 发射产生的空穴更有可能通过该电极到达地,从而产生更亮的(空穴)电流。 SEEBIC 在右侧(EBIC)电极上最亮,由于非晶态GST的电阻率均匀,SEEBIC 在整个GST条带上稳定减小,在左侧电极上最暗[6]。
其他任务包括海军科学家培训和交流计划轮换,在内华达州法伦的海军打击和空战中心工作。在担任 NAWCWD 靶场安全官两年后,卡雷尼奥先生于 2013 年 1 月被指派到海军航空系统工程部领导合成制导演示计划,成功演示了战斧反舰能力。2015 年 8 月,他成为武器和能源部武器副主任,并于 2016 年 3 月被选为 SES 部门负责人。2020 年 3 月,卡雷尼奥先生被任命为目标和动能效应产品总监。2020 年 5 月,他被选为研发组主任,并一直任职到 2021 年 3 月,然后被选为现任职位。
包装说明书(“文档”)。不声称适用于 FDA 监管的应用。本文提供的保证仅在经过适当培训的人员使用时有效。除非文档中另有说明,否则本保证仅限于产品在正常、正确和预期使用的情况下,自发货之日起一年内有效。本保证不适用于买方以外的任何人。提供给买方的任何模型或样品仅用于说明商品的一般类型和质量,并不代表任何产品将符合此类模型或样品。不授予任何其他明示或暗示的保证,包括但不限于适销性、适用于任何特定用途或不侵权的暗示保证。保修期内,买方对不合格产品的唯一救济仅限于卖方自行选择维修、更换或退还不合格产品。卖方不承担因以下原因导致的产品维修、更换或退还:(I) 事故、灾难或不可抗力事件;(II) 买方的误用、过失或疏忽;(III) 以非设计方式使用产品;或 (IV) 不当储存和处理产品。除非产品或产品随附文件中另有明确说明,否则产品仅用于研究,不得用于任何其他目的,包括但不限于未经授权的商业用途、体外诊断用途、体外或体内治疗用途,或任何类型的人类或动物消费或应用。
Thermo Scientific™ Iliad™ 300 (S)TEM 是一款完全集成的分析(扫描)透射电子显微镜,配备新型 Iliad EELS 光谱仪和能量过滤器、专用的 Zebra EELS 探测器、新型 NanoPulser 静电束阻断器,以及 Thermo Scientific™ Dual-X 或 Super-X™ EDX 检测系统之间的选择。
负载催化活性液态金属溶液 (SCALMS) 在烷烃脱氢方面表现出色,尤其是在抗结焦方面。SCALMS 由多孔载体组成,载体上含有催化活性低熔点合金颗粒 (如 Ga-Pd、Ga-Pt),这些颗粒在反应温度下为液态。在新成立的合作研究中心 CRC1452“液体界面催化 (CLINT)”(www.sfb1452.research.fau.eu/),佛罗里达大西洋大学的跨学科科学家小组开发了此类新型催化材料,将选择性、生产率、稳健性和易加工性完美结合。需要对这些催化剂在不同长度尺度上进行高分辨率和 3D 表征,以揭示复杂的孔隙和颗粒形貌、(晶体) 结构、化学组成和催化活性位点的位置,这对于从根本上了解催化过程是必不可少的。在 IMN(www.em.tf.fau.de),我们已经开始使用 CENEM(www.cenem.fau.de)提供的最先进的电子显微镜和纳米 CT 仪器探索 SCALMS 系统的结构特性。
威胁与错误管理 (TEM) 为实际风险管理提供了一种直观而灵活的方法。它最初是由美国德克萨斯大学的人为因素研究人员开发的。威胁与错误管理 (TEM) 模型是一个概念框架,有助于从运营角度理解动态和具有挑战性的运营环境中安全与人为因素之间的相互关系。TEM 不是一个革命性的概念,但它是逐渐发展起来的,是不断努力通过实际整合人为因素知识来提高航空运营安全裕度的结果。法国蓝航空受到全球航空公司的欢迎,并被公认为国际最佳实践,从第一天起,它就将 TEM 政策融入其 SOP 中。威胁与错误管理是我们当前 CRM 实践的核心。这在一定程度上是因为它涵盖了该学科的所有其他领域。法国蓝航空已将 TEM 纳入 FCOM 中描述的每个飞行阶段的介绍以及每次起飞/进近简报中。它应该以交互方式、凭借智慧和常识来使用,而不是通过强制性的个人鹦鹉学舌式投影来解决。
衷心感谢以下贡献者:生态数据委员会生态系统工作组/陆地生态系统任务组和:E.C. (Ted) Lea Tim Brierley 省级生态相关器 GIS 系统分析师资源清单科资源清单科环境部、土地及公园部环境部、土地及公园部 Tony Button Carmen Cadrin GIS 数据经理植被生态学家资源清单科资源清单科环境部、土地及公园部环境部、土地及公园部 David Caverly Christine Cunliffe 数据库顾问业务分析师 Gordian Management Group Inc. Victoria Compucon Consultants George Eade Dennis Demarchi GIS 顾问省级栖息地相关器 Geo Tech Systems 资源清单科环境部、土地及公园部 Terry Gunning Brian Low 栖息地和空间数据分析师地理空间/景观科学家资源清单科加拿大森林服务局环境部、土地及公园部加拿大自然资源部 Bruce Mackenzie Robert Maxwell 高级技术分析师地形专家系统服务部门 资源清单部门 环境部、土地和公园部 环境、土地和公园部 Darren McKellar Del Meidinger 栖息地数据经理 研究生态学家 资源清单部门 研究部门 环境部、土地和公园部 林业部 Nicola Parfett Judith Theroux 技术顾问 团队负责人 E
有许多致命事故的例子都是由于决策失误而发生的,例如在恶劣的天气条件下继续目视飞行,而这些事故本可以通过周密的飞行前规划来避免(请参阅 CAA 安全调查报告 13/5710 和 CAA 安全调查报告 15/1129)。航空事故也因维修机库中的失误而发生 - 导致飞行中出现灾难性后果 - 这些失误本可以在飞机离开地面之前就被发现(请参阅 ATSB 安全报告 AO-2017-078)。