完整的 TESC 计划必须包含叙述部分和计划表。WSDOT 使用 TESC 计划和溢漏预防、控制和对策 (SPCC) 计划来满足生态部 (Ecology) 颁发的 NPDES 施工雨水通用许可证 (CSWGP) 的雨水污染预防规划 (SWPPP) 要求。此清单旨在帮助 TESC 计划设计者确保 TESC 计划完整并符合 CSWGP 规划要求。
世界正在经历多维度的快速技术进步,但代价是环境可持续性。在这个不断发展的世界里,对能源的需求与日俱增。用于生产能源的自然资源,如化石燃料,由于被广泛用于满足这种不断增长的能源需求,正濒临灭绝。当今世界上大部分化石燃料燃烧的能量都用于持续生产饮用水、供暖、制冷应用和发电(Rupam 等人,2022a)。除了不可逆转的资源枯竭外,燃烧化石燃料还会导致温室气体和其他污染物的过量排放,从而导致全球变暖。考虑到气温上升的灾难性影响,近年来,全球迫切需要开发节能、环保的水生产、暖通空调应用、发电等系统。尽管可再生能源正在快速发展,但尚未达到令人满意的水平,即所有能源密集型系统都可以用它来运行。除此之外,可再生能源过度依赖环境约束。例如,在夜间或阴天,无法收获太阳能,或者光伏发电的能量转换率急剧下降。另一方面,当阳光充足时,太阳能光伏发电产生的能量超过当时所需的能量。大多数情况下,由于缺乏适当的能量存储或转换系统,这些剩余能量最终被浪费掉。在这方面,热能转换和存储系统由于其多方面的特点可以提供相当现实的替代方案。热能存储系统可以在有利条件下储存剩余能源,并在不利情况下以各种形式提供清洁且负担得起的能源,例如供暖、制冷、饮用水甚至发电。相反,热能转换系统可以为进一步增加可再生能源在能源结构中的份额铺平道路,并在未来的脱碳社会中发挥重要作用。在全球范围内,目前正在广泛研究各种热能存储和转换 (TESC) 技术。图 1 展示了与 TESC 这一广阔研究领域相关的一些最突出的技术。尽管 TESC 技术具有巨大的潜力,但它们的利用面临着与之相关的各种挑战。根据应用和工作条件,可能会出现某些障碍,为了克服这些障碍,需要科学和工程领域的共同努力。这项专业大挑战旨在解决主要缺点,并讨论克服与当前 TESC 技术相关的这些挑战的未来研究方向。
5. 持续的人工智能合作与领导:我们将继续与技术伦理指导委员会 (TESC) 以及各种内部和外部合作伙伴合作。此次合作旨在改进我们的人工智能使用,开发强大的流程,并增强报告机制,使 CPS 成为负责任的人工智能采用领域的领导者。