拉脱维亚大学量子计算科学中心的一个重要研究课题是量子计算:量子信息的理论方面,包括量子算法、计算复杂性、通信和密码学。由于量子计算的实际应用解决方案即将出现,拉脱维亚大学数学与计算机科学研究所 (IMCS UL) 的战略是使用可以立即应用的量子技术。IMCS UL 的活动集中在量子通信和加密(量子加密)应用上。IMCS UL 于 2019 年开始开发量子密码学研究课题,从 ID Quantique (https://www.idquantique.com) 购买并运行测试了 Clavis 3。为了在研究所开展量子密码学研究,与工业界建立了密切的研究合作关系:国家股份公司“拉脱维亚国家广播电视中心”LVRTC(www.lvrtc.lv)、移动运营商LMT(www.lmt.lv)、电信公司TET(www.tet.lv)和拉脱维亚电子通信局(www.vases.lv)。目前,QKD技术已经在LVRTC和LMT光纤基础设施中进行了测试。研究的必要性与制定引入新综合技术的战略有关,该技术可能影响我们日常生活的不同方面和参与者。所选的研究方法是概念分析。它包括通过文献研究收集的数据探索。研究策略包括比较和评估理论研究中的不同解释,并将其反映到实施欧洲共同体战略时分析的实际情况中。
这正是系统性辅导的用武之地,其最初的重点是糖尿病患者行为的背景、结构和过程。从建构主义角度来看,教练承担着观察者的角色。这意味着要了解从患者的角度来看情况是如何出现的,他有什么需求,什么价值观指导他的行为,以及他为自己看到了什么挑战和目标。确定患者的“现实建构”并与他一起反思是很重要的。通过这种方式,患者可以了解自己的情况,确定资源,形成愿景,并与您一起制定以需求为导向的、针对其情况量身定制的解决方案,并在此基础上做出决定。显然需要考虑的关系有多么复杂,因此指导必须基于系统方法。
有研究表明,对抗大生物体免疫因素的防御是通过形成对革兰氏阳性菌有溶解作用的膜囊泡来实现的,而这反过来可能导致微生物产生抗生素耐药性。金黄色葡萄球菌 ( S. aureus ) 是引起糖尿病足综合征 (DFS) 的常见病原体。我们描述了抗生素耐药性以及溶解囊泡作为金黄色葡萄球菌分离株和金黄色葡萄球菌参考菌株培养物中抗生素耐药性的作用。此外,我们使用枯草芽孢杆菌 ( B. subtilis ) 来确定囊泡在 36 名不同年龄的缺血性和混合性 DFS 患者中的溶解作用。这项研究的结果是,我们发现膜囊泡具有溶解作用,在金黄色葡萄球菌参考菌株及其临床分离株的囊泡周围以及枯草芽孢杆菌参考菌株的囊泡周围均形成了溶解区。在编码对多种抗生素耐药性的基因中,16.7%的临床菌株检测到blaCTX-M-2基因,11.1%的菌株检测到Erm和Tet基因,5.5%的菌株检测到Mec-1基因,5.5%的菌株检测到VanA和VanB基因。5.5%的菌株还检测到了质粒介导的喹诺酮类药物耐药基因qnrB。同时,11.1%的金黄色葡萄球菌临床菌株检测到多重耐药。进一步的研究应分析所述基因对粘附和膜囊泡形成的贡献及其在DFS患者和其他来源的伤口和感染的伤口愈合发病机制中的意义。
摘要。在测序相似序列的混合物时,重建单倍型很重要。长阅读测序可以将遥远的等位基因连接到分解类似的单倍型,但是处理误差需要专门的技术。我们提出了Devider,这是一种用于单倍序列(例如病毒或基因)的算法。Devider使用在信息性等位基因的字母表上使用序列到图形对准的位置de bruijn图,以提供与各种长阅读测序技术兼容的快速组装启发的方法。在包含七个HIV菌株的合成纳米孔数据集上,Devider恢复了97%的单倍型内容的97%,即下一个最佳方法的86%,同时服用<4分钟和1 GB的存储器,以> 8000×覆盖范围。基准对抗微生物耐药性(AMR)基因的合成混合物的基准测试表明,分离器恢复了83%的单倍型,比下一个最佳方法高23个百分点。在实际PACBIO和NANOPORE数据集上,Devider在几秒钟内概括了先前已知的结果,从而消除了具有> 10个菌株的细菌群落和HIV-1共感染数据集。我们使用Devider来研究富含AMR基因的长读牛肠元素的宿主内多样性,发现TET(Q)Tetracycline抗性基因具有13种不同的单倍型,具有> 18,000倍覆盖量和6个单倍型的cfxa2 beta-beta-beta-lacta-lacta-lacta-lacta抗体基因。我们发现了这些AMR基因单倍型的清晰重组块,展示了Devider揭示异质混合物生态信号的能力。
摘要背景属于人α-HERPESVIRUSS组的Varicella -Zoster病毒(VZV)尚未开发为溶疗病毒疗法的平台,尽管临床病例报告表明VZV感染与癌症缓解之间存在潜在的关联。方法,我们根据疫苗菌株VOKA和实验室应变Ellen构建了溶瘤VZV候选物。随后评估了这些新设计的病毒在人类MEWO黑色素瘤异种移植模型中的溶瘤特性和小鼠B16-F10- nectin1黑色素瘤合素模型中。导致MEWO异种移植模型,Voka和Ellen都表现出有效的抗肿瘤功效。然而,观察到,将高蛋白原突变引入糖蛋白B中导致VZV的有效性降低。值得注意的是,ORF8的缺失(编码病毒脱氧尿苷三磷酸酶)减弱了体外和体内VZV的复制,但并未损害VZV的溶征效力。我们将VZV Ellen-δORF8载体武装到TET控制的小鼠单链IL12(SCIL12)基因盒中。该增强病毒在免疫能力的B16-F10- Nectin1模型中因其溶瘤活性和触发全身性免疫反应而验证。结论这些发现突出了将Ellen-δORF8-TET-SCIL12用作基于VZV的新型癌疗法病毒疗法的潜力。
10-11转倾性(TET)酶通过连续氧化5-甲基胞嘧啶(5MC)对衍生物的连续氧化有助于调节甲基,这些酶在缺乏细胞分裂的情况下可以通过基础外观修复(BER)机制积极去除。这在有丝质神经元中尤其重要,因为DNA甲基化的变化与神经功能的变化相关。tet3,具体来说,是发育中神经元分化的关键调节剂,并介导了与认知功能相关的成年神经元的甲基甲基组的动态变化。虽然将DNA甲基化理解为调节转录,但对神经元中TET3依赖性催化活性的特定靶标几乎一无所知。我们报告了神经胚瘤衍生细胞系的无偏转录组分析的结果; Neuro2a,其中TET3被沉默。氧化磷酸化(OXPHOS)被确定为最显着下调的功能典型途径,并且通过测量海马生物能源分析仪的氧消耗率来证实这些发现。通过TET3-SiLencing降低了核和线粒体编码的OXPHOS基因的mRNA水平,但我们没有发现这些基因基因座的差异(羟基)甲基化沉积的证据。然而,在没有TET3的情况下,已知与线粒体质量控制相关的基因的mRNA表现也显着下调。这些基因之一;内生被认为是其基因体内非CPG甲基化位点TET3催化活性的直接靶标。因此,我们提出,异常的线粒体稳态可能有助于Oxphos的降低,而神经2a细胞中TET3降低了调节。
肠道沙门氏菌和大肠杆菌是与人类和动物中食源性疾病有关的众所周知的细菌。为它们的进化,毒力因素和抗药性确定提供了宝贵的见解。这项研究旨在表征先前分离的沙门氏菌(n = 14)和e。大肠杆菌(n = 19),使用全基因组测序中的牛奶,肉及其相关的餐具。在加纳,大多数沙门氏菌血清射手(弗雷斯诺,普利茅斯,iftantis,fivantis,give和orle-ans)在加纳尚待报道。大多数沙门氏菌分离株都是泛敏感的,但是赋予fosfomycin的抗性的基因(Fosa7。2)和四环素(TET(a))分别在一个和三个分离株中检测到。七个沙门氏菌分离株带有INCI1-I(Gamma)质粒复制子。尽管在沙门氏菌菌株中抗菌抗性并不常见,但大多数(11/19)E。大肠杆菌菌株至少具有一个分辨率基因,近一半(8/19)具有多药耐药性和携带质粒。19 e中的三个。大肠杆菌菌株属于通常与肠道e e相关的血清。大肠杆菌(EAEC)病原体。虽然属于毒力相关谱系的菌株缺乏关键质粒编码的毒力质粒,但在大多数E中都检测到了几种质粒复制子。大肠杆菌(14/19)菌株。被这些病原体污染的食物可以作为疾病传播的工具,带来严重的公共卫生风险,并需要严格的食品安全和卫生习惯,以防止爆发。因此,需要进行持续的监视和预防措施,以阻止食源性病原体的传播并降低加纳相关疾病的风险。
本报告探讨了机场作为能源枢纽的作用——随着运输和能源系统转向减少对化石燃料的依赖,这一概念可能会得以实现。这一概念意味着机场扩大其职责范围和业务运营,从而有助于航空运输系统从当今的航空燃料向电力、氢气或生物燃料等无化石替代品的转变。因此,作为能源枢纽,机场可以为减少航空业的碳足迹做出贡献。除了为航班本身提供电力或由非化石电力生产的其它航空燃料外,机场地面运营的电气化还可以进一步将机场融入电网,减少当地排放,为全球温室气体减排做出贡献。凭借现有的交通和物流联系,机场还可以发挥协调未来交通能源需求的作用,为当地能源市场做出贡献并支持电网稳定。通过整合可再生能源生产、能源储存甚至无化石燃料的生产,机场将成为交通和能源系统的双向枢纽。这平衡了多种需求,有助于实现整个经济的总体可持续发展目标。
需要在真空中产生原子束并理解定向量子化,即空间中原子磁矩的排列以及这种排列的有针对性的改变。这一领域的先驱是奥托·斯特恩 (Otto Stern),他是法兰克福大学和汉堡大学的教授(自 1923 年起)[2]。实际上,每个物理学家都会遇到与沃尔特·格拉赫(Walter Gerlach)在《原子物理学导论》中一起进行的“斯特恩-格拉赫实验”[2]。这个实验的解释今天尚未完成,因为它涉及物理测量过程的基本问题 [3, 4] 。实验结果一致得出,原子在外磁场中的磁矩μ不呈现任意方向,而仅呈现一定的值。在不均匀磁场中具有磁矩 µ 的原子上的力也呈现离散值。在一次历史实验中,斯特恩和格拉赫观察到银原子束在通过不均匀磁场进行状态选择后,空间分裂成两个部分光束。Isidor Isaac Rabi,用今天的话来说,是汉堡斯特恩研究所的“博士后”,他扩展了测量装置,包括一个电磁波可以辐射到原子上的相互作用区域,以及第二个区域磁性
遗传听力缺陷的遗传听力损失组非常多样化。可以将它们分为非综合征和综合征,具体取决于基因缺陷是仅引起助听器还是更广泛的症状。GJB2基因错误在几个人群中被评估为遗传听力损失(5-7)。芬兰人群中,估计GJB2基因缺陷可以解释几乎17%的非综合性听力(1)。非综合听力缺陷是听力损失的最大和百分比。现在以超过120个基因而闻名(8)。基因的很大一部分编码内耳的结构成分(例如alpha技术,tecta)或影响毛细胞内耳的功能(例如Stereo-Silo,strc)(9)。导致听力损失的GEE连接故障对许多细胞功能有影响,例如支持结构(例如肌球蛋白7a,myo7a;肌球蛋白6,myo6),细胞的细胞(例如β-2打开蛋白,GJB2),离子通道和细胞运输。遗传听力缺陷也可能与500多个综合征有关(10)。最常见的是Usher综合征,其具有视网膜变性,除了听力衰竭外,Waardenburg综合征。图1显示了先天听力损失的背景和继承模型。听力损失的类型会影响基因缺陷的概率。在儿童中,紧凑的听力缺陷是由于遗传原因引起的,原因是粘合性耳部疾病(11)。而不是波特 -通过基因缺陷鉴定出了先天性传感器听力损失的患者中约有一半的患者(12)。