然而,目前用于递送抗癫痫药物的纳米载体报道很少,且大多数是单靶向纳米载体,仍会产生副作用。近年来,微流控技术在许多生物医学领域发挥着重要作用。20 – 22 特别是微流控芯片可以很容易地合成尺寸均匀且小的纳米颗粒,23 – 26 为制备纳米药物提供了平台。在此,我们提出了一种双靶向纳米载体系统将拉莫三嗪 (LTG) 递送至患病神经元以治疗癫痫。LTG 是临床上的一线抗癫痫药物。4,27 然而,它在水中的溶解度低,容易在肝脏中代谢。因此,需要高剂量或重复给药才能达到治疗浓度,28,29 但可能会引起恶心、头痛、视力模糊、头晕和共济失调等副作用。为了优化 LTG 的药理作用并尽量减少其副作用,双靶向纳米载体系统具有两个组分:(i)D 型 T7 (D-T7) 肽,T7 肽的逆向序列,与转铁蛋白 (Tf) 受体(BBB 的主要成分)显示出高结合力,可有效引导药物输送到中枢神经系统 (CNS),30 – 35 被设计用于靶向 BBB。(ii)Tet1 肽,它可以特异性地与神经元表面高表达的鞘磷脂和神经节苷脂 (G T1b 受体) 结合。 36 – 39 尽管已有报道称 T7 肽、D-T7 肽和 Tet1 肽能够靶向各自的靶点,以及 T7 肽和 Tet1 肽的组合能够治疗阿尔茨海默病,但尚未尝试将 D-T7 肽和 Tet1 肽组合靶向中枢神经系统 (CNS)。D-T7 肽对 Tf 受体的结合力比 T7 肽更高,因此需要探索 D-T7 肽和 Tet1 肽组合靶向中枢神经系统的效果。32,33,38,39 我们在两步微流体芯片上合成了一种双靶向递送系统,该系统已被
大量 X 连锁基因逃避 X 染色体失活,并与独特的表观遗传特征相关。与 X 逃避密切相关的一种表观遗传修饰是启动子区域的 DNA 甲基化降低。在这里,我们通过编辑 CDKL5 启动子上的 DNA 甲基化,从人类类神经元细胞中沉默的 X 染色体等位基因中创建了一种人工逃避,CDKL5 是一种导致婴儿癫痫的基因。我们发现,使用三个向导 RNA 将 TET1 的催化域与靶向 CDKL5 启动子的 dCas9 融合,结合从 CpG 二核苷酸中去除甲基,可显著重新激活失活等位基因。令人惊讶的是,我们证明 TET1 和 VP64 转录激活因子的共表达对非活性等位基因的重新激活具有协同作用,使活性等位基因的水平超过 60%。我们进一步使用多组学评估来确定转录组和甲基化组上的潜在脱靶。我们发现 dCas9 效应物的协同传递对靶位点具有高度选择性。我们的研究结果进一步阐明了与逃避 X 染色体失活相关的 DNA 甲基化降低的因果作用。了解与逃避 X 染色体失活相关的表观遗传学对患有 X 连锁疾病的人有很大的帮助。
大量 X 连锁基因逃避 X 染色体失活,并与独特的表观遗传特征相关。与 X 逃避密切相关的一种表观遗传修饰是启动子区域的 DNA 甲基化降低。在这里,我们通过编辑 CDKL5 启动子上的 DNA 甲基化,从人类类神经元细胞中沉默的 X 染色体等位基因中创建了一种人工逃避,CDKL5 是一种导致婴儿癫痫的基因。我们发现,使用三个向导 RNA 将 TET1 的催化域与靶向 CDKL5 启动子的 dCas9 融合,结合从 CpG 二核苷酸中去除甲基,可显著重新激活失活等位基因。令人惊讶的是,我们证明 TET1 和 VP64 转录激活因子的共表达对非活性等位基因的重新激活具有协同作用,使活性等位基因的水平超过 60%。我们进一步使用多组学评估来确定转录组和甲基化组上的潜在脱靶。我们发现 dCas9 效应物的协同传递对靶位点具有高度选择性。我们的研究结果进一步阐明了与逃避 X 染色体失活相关的 DNA 甲基化降低的因果作用。了解与逃避 X 染色体失活相关的表观遗传学对患有 X 连锁疾病的人有很大的帮助。
摘要:表观遗传学在慢性疼痛上的作用尚未充分表征。DNA组蛋白甲基化受到从头甲基转移酶(DNMT1-3)和十种二加氧酶(TET1-3)至关重要的调节。证据表明,与伤害感受相关的不同中枢神经系统区域,即背根神经节,脊髓和不同的大脑区域都改变了甲基化标记。在DRG,前额叶皮层和杏仁核中发现了全局甲基化的降低,这与DNMT1/3A表达降低有关。相比之下,TET1和TET3的甲基化水平和mRNA水平升高与炎性和神经性疼痛模型中的增强性疼痛性超敏反应和异常性有关。由于表观遗传机制可能负责慢性疼痛状态中描述的各种转录修饰的调节和协调,因此,通过这项研究,我们旨在评估几个大脑区域中神经性疼痛中TET1-3和DNMT1/3A基因的功能作用。在神经性疼痛的不幸的神经损伤大鼠模型中,手术后21天,我们发现内侧前额叶皮层中的TET1表达增加,并且在尾甲状腺肿和杏仁核中的表达降低。 TET2在内侧丘脑中被上调。内侧前额叶皮层和尾状甲状腺中的TET3 mRNA水平降低;在尾状药物和内侧丘脑中,DNMT1被下调。使用DNMT3A观察到表达的统计学显着变化。我们的结果表明,在神经性疼痛的背景下,这些基因在不同大脑区域中具有复杂的功能作用。DNA甲基化和羟甲基的概念是细胞类型的特定细胞类型,而不是组织特定的,以及在建立神经性疼痛模型后的时间顺序差异基因表达的可能性。
十个时期的易位甲基二氧酶(TET Pro Teins)属于铁(II)和α-酮戊二酸依赖性二氧酶。他们(TET1,TET2和TET3)催化DNA(5-甲基胞菌素)中的连续氧合反应[1,2]。TET蛋白逐渐将5-甲基胞嘧啶转化为5-羟基甲基胞嘧啶,5-甲基环胞嘧啶,最后是5-羧基糖苷。然而,一些高影响力的研究表明,TET蛋白也可能参与RNA中5-甲基乳房的氧化[3-5]。TET蛋白在DNA脱甲基化中的作用如图1。DNA胞嘧啶改性(5-甲基胞嘧啶,5-羟基甲苯丁胺,5-甲基环胞嘧啶和5-羧基糖苷)在控制染色体功能的控制中起关键作用(例如,X-Chromome insct ins x-Chrome insctry and in Inmome insctive and x-chrome insive and in Inmome insctiv and in Inmome inscry and in Inmome inscry and insctiv and in Inmome inscry and insctiv and in Inmome。[6 - 8]。5-甲基胞霉素(5MC;称为第五碱)显着参与基因表达和转座的抑制和5-甲基胞霉素(5MC;称为第五碱)显着参与基因表达和转座的抑制和
DNA 甲基化由从头甲基转移酶 DNMT3a 和 DNMT3b 建立,并由 DNMT1 在细胞分裂过程中维持,DNMT1 优先识别半甲基化 DNA 而非非甲基化 DNA。1 DNA 甲基化可被十一种易位甲基胞嘧啶双加氧酶 (TET) 去除,包括 TET1、TET2 和 TET3。2 组蛋白修饰由不同的酶催化。各种组蛋白乙酰转移酶 (HAT) 和组蛋白去乙酰化酶 (HDAC) 催化或去除赖氨酸上的乙酰化。组蛋白甲基转移酶 (HMT) 和脱甲基酶催化或去除赖氨酸上的甲基化,蛋白质精氨酸甲基转移酶 (PRMT) 催化组蛋白尾部的精氨酸甲基化。小分子抑制剂是从小分子库中筛选出来的化合物,可干扰特定的生物过程。一些小分子抑制剂针对表观遗传过程,用于基础研究和治疗开发。这些抑制剂的靶标通常是表观遗传标记的写入者或擦除者。DNA 去甲基化剂,如 DNA 甲基转移酶抑制剂 (DNMTi),可降低 DNA 甲基化,已用于抗癌治疗。
DNA甲基化是许多生物过程的关键表观遗传机制,其异常调控与人类多种疾病密切相关。精准操控DNA甲基化有望增进我们对这一关键机制的理解,并开发新的治疗方法。此前,我们只能通过小分子(如5-氮杂-2-脱氧胞苷)或无针对性地干扰相关基因(如DNA甲基转移酶)来改变全基因组的DNA甲基化,这使得研究这种表观遗传标记在特定基因组位点的功能意义变得十分困难。通过将DNA去甲基化过程中的关键酶(Ten-eleven易位双加氧酶1,Tet1)的催化结构域与可重编程的序列特异性DNA靶向分子蛋白dCas9融合,我们开发了一种DNA甲基化编辑工具(dCas9-Tet1),可以有针对性地对特定基因组位点进行去甲基化。 dCas9-Tet1 系统使我们能够仅通过替换单个向导 RNA 来研究几乎任何给定位点的 DNA 甲基化作用。本文,我们描述了一种方案,该方案能够使用 dCas9-Tet1 系统高效、特异性地对各种细胞培养物中特定基因组位点的 DNA 甲基化进行模块化和可扩展的操作。
目的:分析长期抗阻训练或耐力训练引起的野生型小鼠海马全基因组表观基因组和转录组变化。方法:我们对小鼠海马进行 4 周特定训练后进行全基因组亚硫酸盐测序 (WGBS) 和 RNA 测序 (RNA-seq)。此外,我们在干预前后使用了一种新颖的物体识别测试来确定锻炼是否导致认知功能的改善。结果:虽然本研究中发现的大多数 DNA 甲基化变化都是训练模型特有的,但大多数与低甲基化有关,并且在相似的组蛋白标记、染色质状态和转录因子结合位点中富集。值得强调的是,Tet1 结合位点 DNA 甲基化的缺失与基因表达变化之间存在显著关联,表明这些表观基因组变化在转录调控中的重要性。然而,耐力和阻力训练激活不同的基因通路,耐力训练激活的基因通路与神经可塑性有关,阻力训练激活的基因通路与干扰素反应通路有关,这似乎也与学习和记忆功能的改善有关。结论:我们的研究结果有助于理解不同运动模式对大脑健康产生有益影响的分子机制,并为未来的研究提供新的潜在治疗靶点。2021 作者。由 Elsevier GmbH 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
摘要:DNA 甲基化与染色质状态和细胞类型特异性基因表达的调节密切相关。印记控制区 (ICR) 上的等位基因特异性 DNA 甲基化调控母源或父源等位基因的印记基因的独家表达。H19/IGF2 印记位点 ICR1 处的异常 DNA 高甲基化或低甲基化分别是印记障碍 Beckwith-Wiedemann 综合征 (BWS) 和 Silver-Russell 综合征 (SRS) 的特征。在本文中,我们使用 dCas9-SunTag 和 TET1 催化域进行表观基因组编辑,以诱导 HEK293 细胞中 ICR1 处的靶向 DNA 去甲基化。靶位点的 5-甲基胞嘧啶 (5mC) 水平降低高达 90%,瞬时转染 27 天后,仍观察到 >60% 的去甲基化。与 ICR1 内 CTCF 结合位点的稳定去甲基化一致,DNA 甲基化敏感绝缘体 CTCF 蛋白的占有率在 27 天内增加了 2 倍以上。此外,H19 表达稳定增加了 2 倍,而 IGF2 受到抑制,尽管只是暂时的。我们的数据表明,表观基因组编辑能够在一次短暂治疗后实现印迹控制区域 DNA 甲基化的长期变化,这可能为治疗性表观基因组编辑方法在治疗印迹障碍方面铺平了道路。
图 2. DNMT3A 编辑细胞中的基因表达动态表明了一种不同于二进制的记忆形式。A 使用与 dCas9、PhlF 或 rTetR 融合的 KRAB、DNMT3A 或 TET1 作为 DNA 结合域 (DBD) 进行瞬时表观遗传编辑的概述。B 本研究开发的实验系统示意图。报告基因通过位点特异性染色体整合整合到内源性哺乳动物基因座中。哺乳动物组成型启动子 (EF1a) 驱动荧光蛋白 EBFP2 的表达。上游结合位点能够靶向募集表观遗传效应物,这些效应物与 DNA 结合蛋白 rTetR、PhlF 或 dCas9 融合。报告基因两侧是染色质绝缘体,以与其他基因隔离。 C 实验概述描述了瞬时转染到带有报告基因的细胞、基于转染水平的荧光激活细胞分选和时间过程流式细胞术测量。D 根据图 C 中显示的实验时间线,DNMT3A 编辑(DNMT3A-dCas9)报告基因的基因表达动态。显示的是 DNMT3A 编辑细胞的单细胞流式细胞术测量(EBFP2)。DNMT3A-dCas9 靶向启动子上游的 5 个靶位点,并使用乱序 gRNA 靶序列作为对照(图 SE.2 A、B、表 S3)。黄色阴影表示检测到转染标记的时间。显示的数据来自 3 个独立重复的代表性重复。E 转染 DNMT3A-dCas9 和细胞分选后 14 天进行 MeDIP-qPCR 和 ChIP-qPCR 分析,以获得高水平的转染。分析了启动子区域(表 S4 和方法)。显示的数据来自三个独立的重复。报告的是使用标准 ∆∆ C t 方法相对于活性状态的倍数变化及其平均值。误差线是平均值的标准差。DNMT3A-dCas9 靶向启动子 (gRNA) 上游的 5 个靶位点。使用乱序的 gRNA 靶序列 (gRNA NT) 作为对照。* P <0.05,** P <0.01,*** P <0.001,非配对双尾 t 检验。F 根据图 C 中显示的实验时间线的 KRAB 编辑 (PhlF-KRAB) 基因表达动态。显示的是单个细胞的报告基因 (EBFP2) 的流式细胞术测量值。黄色阴影区域表示在未应用 DAPG 期间检测到转染标记的时间。从第 6 天开始,在 PhlF-KRAB 和 PhlF 条件下应用 DAPG。每天测量不同的独立重复。显示的数据来自 3 个独立重复。G 转染 PhlF-KRAB 和高水平转染细胞分选后 6 天的 MeDIP-qPCR 和 ChIP-qPCR 分析。分析的是启动子区域。数据来自三个独立重复。显示的是相对于活性状态的标准 ∆∆ C t 方法确定的倍数变化及其平均值。误差线是平均值的标准差。* P <0.05,** P <0.01,*** P <0.001,非配对双尾 t 检验。H 当 KRAB = 0、TET1 = 0 时获得的染色质修饰回路。参见 SI 图 SM.1 C。I 上图:(CpGme, X) 对的剂量反应曲线。下图:DNMT3A 脉冲强度与 DNA 甲基化等级 (CpGme) 之间的剂量反应曲线。脉冲强度通过增加其高度来增加。参见 SI 图 SM.1 D 和 SM.3。J 系统基因表达的平稳概率分布,由 SI 表 SM.1 和 SM.4 中列出的反应表示,参数值在 SI 第 S.9.3 节中给出。K 系统在 t = 28 天后的基因表达概率分布,如图 J 所示,参数值和初始条件在 SI 第 S.9.4 节中给出。参见 SI 图 SM.1 B 和 SM.2。在图 I 和 J 中,DNMT3A 动力学被建模为随时间呈指数下降的脉冲(参见第 S.1.1 节 - SI 方程 (SM.7))。在我们的模型中,ε (ζ) 是衡量基础(招募)擦除率与每次修饰的自催化率之间比率的参数。参见 SI 图 SM.1 E 和 SM.3。
