实用的量子网络将需要由许多内存量子位组成的量子节点。这反过来将增加控制每个量子线所需的光子电路的复杂性,并需要策略以多重记忆并克服其过渡频率的不均匀分布。在可见的近红外(VNIR)波长范围内运行的集成光子学,与领先的量子内存系统的过渡频率兼容,可以为这些需求提供解决方案。在这项工作中,我们意识到了VNIR薄膜锂Nio-bate(TFLN)集成光子平台与关键组件,以满足这些要求。这些包括低损失耦合器(<1 dB/ - facet),开关(> 20 dB灭绝)和高带宽的电光调节器(> 50 GHz)。使用这些设备,我们证明了高效率和与CW兼容的频率变化(在15 GHz时效率> 50%),以及通过嵌套调制器结构的同时激光振幅和频率控制。最后,我们突出显示了使用演示的TFLN
一种重要的材料正在改变光学芯片的工作方式,使其更小,更快,更高效:薄膜硅锂(TFLN)。它为光和电信号如何相互作用提供了出色的属性。这可以使关键组件(例如电气调节器和信号处理器)的无缝集成一个单一的芯片。因此,光学设备可以实现前所未有的紧凑性,效率和性能。
薄膜硅锂(TFLN)已成为实现高性能芯片尺度光学系统的有前途的平台,涵盖了从光学通信到微波光子学的一系列应用。此类应用程序依赖于将多个组件集成到单个平台上。然而,尽管其中许多组件已经在TFLN平台上进行了证明,但迄今为止,该平台的主要瓶颈是存在可调,高功率和狭窄的芯片激光器的存在。在这里,我们使用光子线粘结解决了这个问题,将光学放大器与薄膜锂锂反馈电路集成在一起,并证明了扩展的腔二极管激光器,产生了78 MW的高芯片上功率,侧模式抑制较大,大于60 dB,大于43 nm的宽波长可调节性。在短时间内的激光频率稳定性显示了550 Hz的超鼻中固有线宽。长期记录表明,光子线键键激光器具有58小时的无模式操作的高无源稳定性,频率漂移仅为4.4 MHz/h。这项工作将光子线粘结验证为用于高性能在芯片激光器上的可行集成解决方案,为系统级别的升级和瓦特级输出功率打开了路径。
薄膜硅锂(TFLN)已成为实现高性能芯片尺度光学系统的有前途的平台,涵盖了从光学通信到微波光子学的一系列应用。此类应用程序依赖于将多个组件集成到单个平台上。然而,尽管其中许多组件已经在TFLN平台上进行了证明,但迄今为止,该平台的主要瓶颈是存在可调,高功率和狭窄的芯片激光器的存在。在这里,我们使用光子线粘结解决了这个问题,将光学放大器与薄膜锂锂反馈电路集成在一起,并证明了扩展的腔二极管激光器,产生了78 MW的高芯片上功率,侧模式抑制较大,大于60 dB,大于43 nm的宽波长可调节性。在短时间内的激光频率稳定性显示了550 Hz的超鼻中固有线宽,而长期记录表明,光子线键合激光器的高无源稳定性具有46小时的无模式跳动操作。这项工作将光子线粘结验证为用于高性能在芯片激光器上的可行集成解决方案,为系统级别的升级和瓦特级输出功率打开了路径。
摘要:用薄膜 - 氯尼贝特(TFLN)培养基制成的介电平板波导,以在线性状态下进行操作。我们概述并实施了一个很大程度上的分析程序,以对具有双重,各向异性核心的三层平板进行严格的模态分析。对于z切波指南,平板本本元素问题将TE和TM模式的标量方程组分开。平板主要支持杂种特征模式,具有明显的占主导地位的TE或TM极化,并且具有相对于晶体轴的模式的传播方向的有效指标。在没有垂直对称性的单数构型中,可以观察到近堕落模式的强杂交,或者在对称板中,其中两个近乎退化的模式为相同的对称类别。讨论了具有氧化物和空气盖的平板,讨论了平板厚度和俯冲角的分散曲线。
2 加州理工学院物理、数学和天文学分部及量子技术联盟 (AQT),美国加利福尼亚州帕萨迪纳 91125 状态 光子具有许多有利于实现量子技术的特性 [1]:它们存在于环境条件下,通常不受环境噪声的影响,并且在一定程度上可以轻松产生、操纵和检测。由于它们还可以长距离传播而不会造成重大损失,因此单个光子非常适合量子密钥分发,旨在利用量子不确定性来保护远距离各方之间的消息。然而,光子的这些特性也为实现需要单个光子之间确定性相互作用的量子技术带来了挑战,例如用于光子量子信息处理。集成光子学将在实现长距离(例如全球)、中距离(例如城域或房间大小)和短距离(例如芯片间或芯片内)量子网络中发挥关键作用。但是,用于量子技术应用的光子学平台的性能需要比传统应用的要求好得多,并且在某些方面与传统应用的要求有所不同。例如,量子光子学平台需要:(i)超低损耗,以保存脆弱的量子态;(ii)能够精确控制光子的时间和光谱分布;(iii)允许快速、低损耗的光开关路由量子信息;(iv)能够在可见光和电信波长下工作,这两个波长下有许多单光子源和量子存储器工作,并且存在低损耗光纤;(v)具有强非线性,可高效地进行频率上变频和下变频、量子转导和纠缠光子对生成;(vi)允许集成光电探测器和操作电子设备。领先的集成光子平台硅和氮化硅由于缺乏二阶非线性而无法满足这些要求,这限制了它们的功能 [1]。虽然可以通过晶体改性或异质集成来解决这一问题,但仍需观察其中涉及的权衡因素,例如效率和可扩展性。薄膜铌酸锂 (TFLN) 已成为一种有前途的量子光子平台。LN 对光子透明(带隙约为 4 eV),具有强大的电光 (EO) 效应,允许使用微波快速改变光的相位,并且具有较高的二阶光学非线性,可通过铁电畴调制(即周期性极化)进行设计 [2]。重要的是,4 英寸和 6 英寸 TFLN 晶圆最近已实现商业化,这激发了人们对这一令人兴奋的材料平台的兴趣。
David Barton Northwestern University,材料科学与工程系dbarton@northwestern.edu摘要薄薄膜锂尼贝特在绝缘子上(TFLN)是一个有前途的经典和量子光子学的平台,因为它具有内在的宽敞的电 - 功能效果,宽阔的透明度窗口,宽阔的透明度窗口和宽面额的可用性。该平台中驾驶电场和折射率之间的直接连接使光场和电场之间的相互作用有了新的相互作用。本演示文稿将主要关注我使用此平台的博士后工作的工作,以创建集成的光子设备到新的和无与伦比的功能。首先,我将在该平台中描述一些设备示例,以利用强大的电彩调制功能,包括飞秒脉冲的产生,高功率和窄线宽激光器以及微波量量子传感器。接下来,我将重点介绍我们在西北部正在从事的一些工作,以了解该材料系统困扰的低频漂移和稳定性问题的材料起源。最后,我们将提出一些未来的工作,以开发新的集成光子材料和设备,以克服尼贝特锂在绝缘子上的局限性。一起,这项工作开发了更好的结构 - 处理 - 良好的设备的绩效指标,同时激发了综合光子学的新材料开发以突出性能和效率的限制。
集成的光子学促进了可扩展,节能的高性能设备的开发,并通过将各种被动和主动的光学组件集成到单个平台上,具有小脚印。这可以改善用于数据通信,传感,成像和量子信息处理的光学系统的性能和稳定性。由这些应用驱动,绝缘子(LNOI)上的薄膜锂(TFLN) / Niobate上的硅锂由于其高的非线性和电磁性能而成为强大的材料平台[1]。薄膜锂锂波导的高模态限制允许具有小弯曲半径的紧凑装置[2]。LNOI是有效的非线性设备[2-6]和快速电磁调节器[7 - 12]的合适候选者。低损坏波导通道可以预期与未来的高性能光子设备高度相关。,非结构化的薄膜材料具有内在的损失(0.2 dB / m [13]),它们远高于大量氯硝基锂的水平,这可能是由于制造过程中造成的离子植入损伤的结果[13]。由这些薄膜板制成的结构化通道表现出更高的衰减,主要是由粗糙的侧壁引起的。为了减轻这种效果,可以用诸如SIO 2之类的材料来覆盖该设备,以减少折射率对比度,可以通过调整制造过程来降低粗糙度,或者可以通过接受多模型的多模式spaveguide Geometries来减少光学模式的重叠[14]。使用这些方法在2023年已证明了1550 nm左右的最低传播损失1 dB / m [15]。低损失被认为是量子光学[16],单个光子处理[17]或光学量子计算[18]的情况下特别是必不可少的。理解这些系统的局限性至关重要,因此,对建模的技术也很重要,在这些领域中很重要。在影响综合光子电路功能的各种损失来源之间
纠缠的光结合相互作用的研究一直在增强动量,因为它们在生物成像和感测中的潜在应用。纠缠的光子被预测为线性化非线性光学过程,并向相互作用横截面提供增强的数量级。研究了和表征纠缠增强的生物成像技术的有效性,设计和表征了基于周期性粘液性锂量含锂(PPLT)的连续波(CW),芯片,片上的宽带,宽带纠缠源。This light source achieved fem- tosecond entangled correlation times comparable to classical ultrafast lasers with an unprecedented power of ∼ 100 nW in near-infrared (NIR), which is a crucial first step toward fully integrated, thin-film lithium niobate (TFLN)-based, visible to NIR entangled photon sources.然后将此光源用于随后的光谱/显微镜实验,以系统地研究具有纠缠的显微镜技术的可行性,例如纠缠的两光子吸收(ETPA)显微镜和纠缠的荧光生命测量值。开发了一种新的方法,可以使用静态分辨的米歇尔森干涉仪来测量ETPA的荧光,该方法擅长消除由于单光子的吸收和散射而导致的错误信号。制作了从戊胺6G(R6G)中检测虚拟状态介导的ETPA的仔细实验尝试,并从吲哚羟胺绿(ICG)中提高了ETPA,并发现了ETPA信号,并且发现ETPA信号低于仪器检测极限,并且经常被诸如散射和局部吸收器等单光子效应掩盖。相反,将实验上限放在研究分子的ETPA横截面上,重点是继续改善光源和仪器检测极限。片上悬而未决的荧光寿命成像显微镜(纠缠 - FLIM)也已被确定为新的未来发展焦点。通过原理证明实验证明了该技术的可行性,该实验揭示了各种溶剂中ICG的荧光寿命。使用CW激光器产生的纠缠光子,寿命测量方案达到了50 ps的时间分辨率,最小可测量的寿命为365 ps,可用于区分相应波长范围内的大多数生物学相关的荧光团。该实验是迈向可扩展,高吞吐量,波长 - 多工和芯片上的FLIM或终身测量结果的关键第一步,可用于无标签的健康监测技术。
q.ant使云访问其第一个光子芯片用于AI推理实时测试q。在内部具有光子芯片的节能本机处理单元。第一代是针对人工智能推断量身定制的,以改善下一代 - 纳特纳特人的碳足迹。Stuttgart - 2024年9月12日 - Q。通过用光而不是电子处理数据,Q.ant的光子本地计算技术预计将比当今的芯片技术更有效地执行复杂的计算任务。通过允许对公司NPU的云访问,用户可以通过示例性展示柜体验这种创新的光子芯片技术:手写的合理化。Q.ant邀请创新者和研究人员参加可以重塑数字景观的转变。在此演示中,Q.ant可以瞥见高性能计算(HPC),物理模拟和人工智能的下一代计算应用程序。感兴趣的人可以在q.ant网站上查看演示,网址为https://native.qant.com/。Light vs Silicon -NPU在数据处理中的能量优势这个展示是当今每个数据中心中发现的任务的代表性示例。与标准CMOS处理器不同的是,Q.Ant的NPU过程数据。此范式偏移允许q.ant以更有效的方式执行基本的数学操作。例如:虽然传统的CMOS处理器需要1,200个晶体管才能执行简单的8位乘法,但使用单个光学元素实现了这一点。仅对于此操作,Q.ant NPU的功率比其常规CMOS对应物高三十倍。“随着对AI的需求的不断增长,对节能解决方案的需求也会增长。Q.ant正在以功能正常的光子处理器的身份领先 - 大多数其他研究阶段仍在。”“此演示突出了解决AI能源需求和更广泛的碳挑战的重要一步。我们邀请研究人员和开发人员通过动手演示探索光子计算的现实潜力。”秘密酱:芯片材料是Q的关键要素它是所有Q.ant npus的骨架,可确保在芯片水平上精确的光控制。该初创公司自2018年成立以来就一直在开发该平台,并控制整个价值链 - 从原材料到完成的芯片。
