Abbexa Ltd,创新中心,剑桥科技园,剑桥,CB4 0EY,英国电话:+44 (0) 1223 755950 - 传真:+44 (0) 1223 755951 - 电子邮件:info@abbexa.com
Referenzen:1。Ellsworth P,Ma A.血友病A和B中的因子模拟和重新平衡疗法:因子浓缩物的结束?血液学和SOC雌醇教育计划。2021; 2021(1):219–225。doi:10.1182/血液学。2021000253 2。Chowdary P.抗组织因子途径抑制剂(TFPI)疗法:一种新的血友病治疗方法。int j hematol。2020; 111(1):42–50。doi:10.1007/s12185-018-2548-6 3。桅杆AE,Ruf W.组织因子途径抑制剂对凝血的调节:对血友病治疗的影响。J血栓止血。2022; 20(6):1290–1300。doi:10.1111/jth.15697 4。Palta S,Saroa R,PaltaA。凝血系统的概述。 印度J Anaesth。 2014; 58:515–23。 doi:10.4103/0019-5049.144643 5。 Ozelo MC,Yamaguti-Hayakawa GG。 全球新型血友病疗法的影响。 res练习血栓止血。 2022; 6(3):E12695。 doi:10.1002/rth2.12695 6。 Marchesini E,Morfini M,Valentino L.血友病治疗的最新进展:评论。 生物制剂。 2021; 15:221–235。 doi:10.2147/btt.s252580 7。 Willyard C.血栓形成:平衡行为。 自然。 2014; 515(7528):S168 – S169。 doi:10.1038/515S168A 8。 Lheriteau E,Davidoff AM,Nathwani AC。 血友病基因疗法:进步和挑战。 血液复兴。 2015; 29(5):321–328。 doi:10.1016/j.blre.2015.03.002 9。 血。 2019; 133(5):389–398。Palta S,Saroa R,PaltaA。凝血系统的概述。印度J Anaesth。2014; 58:515–23。doi:10.4103/0019-5049.144643 5。Ozelo MC,Yamaguti-Hayakawa GG。全球新型血友病疗法的影响。res练习血栓止血。2022; 6(3):E12695。doi:10.1002/rth2.12695 6。Marchesini E,Morfini M,Valentino L.血友病治疗的最新进展:评论。生物制剂。2021; 15:221–235。doi:10.2147/btt.s252580 7。Willyard C.血栓形成:平衡行为。自然。2014; 515(7528):S168 – S169。 doi:10.1038/515S168A 8。 Lheriteau E,Davidoff AM,Nathwani AC。 血友病基因疗法:进步和挑战。 血液复兴。 2015; 29(5):321–328。 doi:10.1016/j.blre.2015.03.002 9。 血。 2019; 133(5):389–398。2014; 515(7528):S168 – S169。doi:10.1038/515S168A 8。Lheriteau E,Davidoff AM,Nathwani AC。 血友病基因疗法:进步和挑战。 血液复兴。 2015; 29(5):321–328。 doi:10.1016/j.blre.2015.03.002 9。 血。 2019; 133(5):389–398。Lheriteau E,Davidoff AM,Nathwani AC。血友病基因疗法:进步和挑战。血液复兴。2015; 29(5):321–328。 doi:10.1016/j.blre.2015.03.002 9。 血。 2019; 133(5):389–398。2015; 29(5):321–328。doi:10.1016/j.blre.2015.03.002 9。血。2019; 133(5):389–398。2019; 133(5):389–398。Weyand AC,管道SW。血友病的新疗法。doi:10.1182/ Blood-2018-08-872291 10。 div>血小板症。in:Rodak的血液学。第六版。 2020。doi:10.1016/b978-008055232-3.60790-1 11。 hemlibra [包装插入]。 南旧金山,加利福尼亚州:Genentech,Inc。; 2022。 12。 BrodM。了解血友病中的治疗负担:血友病治疗经验度量(Hemo-TEM)的发展和验证。 j患者代表结果。 2023; 7:17。 doi:10.1186/s41687-023-00550-6 13。 Miesbach W,O'Mahony B,Key NS,MakrisM。如何讨论血友病的基因疗法? 患者和医师的观点。 血友病。 2019; 25(4):545–557。 doi:10.1111/hae.13769 14。 Kizilocak H,Young G.血友病的诊断和治疗。 Clin Adv Hematol Oncol。 2019; 17(6):344–351。 15。 Srivastava A,Santagostino E,Dougall A等。 WFH管理血友小组成员和合着者的指南。 WFH血友病管理指南,第三版。 血友病。 2020; 26(增刊6):1-158。 doi:10.1111/hae14046第六版。2020。doi:10.1016/b978-008055232-3.60790-1 11。hemlibra [包装插入]。南旧金山,加利福尼亚州:Genentech,Inc。; 2022。 12。 BrodM。了解血友病中的治疗负担:血友病治疗经验度量(Hemo-TEM)的发展和验证。 j患者代表结果。 2023; 7:17。 doi:10.1186/s41687-023-00550-6 13。 Miesbach W,O'Mahony B,Key NS,MakrisM。如何讨论血友病的基因疗法? 患者和医师的观点。 血友病。 2019; 25(4):545–557。 doi:10.1111/hae.13769 14。 Kizilocak H,Young G.血友病的诊断和治疗。 Clin Adv Hematol Oncol。 2019; 17(6):344–351。 15。 Srivastava A,Santagostino E,Dougall A等。 WFH管理血友小组成员和合着者的指南。 WFH血友病管理指南,第三版。 血友病。 2020; 26(增刊6):1-158。 doi:10.1111/hae14046南旧金山,加利福尼亚州:Genentech,Inc。; 2022。12。BrodM。了解血友病中的治疗负担:血友病治疗经验度量(Hemo-TEM)的发展和验证。j患者代表结果。2023; 7:17。 doi:10.1186/s41687-023-00550-6 13。Miesbach W,O'Mahony B,Key NS,MakrisM。如何讨论血友病的基因疗法?患者和医师的观点。血友病。2019; 25(4):545–557。 doi:10.1111/hae.13769 14。 Kizilocak H,Young G.血友病的诊断和治疗。 Clin Adv Hematol Oncol。 2019; 17(6):344–351。 15。 Srivastava A,Santagostino E,Dougall A等。 WFH管理血友小组成员和合着者的指南。 WFH血友病管理指南,第三版。 血友病。 2020; 26(增刊6):1-158。 doi:10.1111/hae140462019; 25(4):545–557。doi:10.1111/hae.13769 14。Kizilocak H,Young G.血友病的诊断和治疗。 Clin Adv Hematol Oncol。 2019; 17(6):344–351。 15。 Srivastava A,Santagostino E,Dougall A等。 WFH管理血友小组成员和合着者的指南。 WFH血友病管理指南,第三版。 血友病。 2020; 26(增刊6):1-158。 doi:10.1111/hae14046Kizilocak H,Young G.血友病的诊断和治疗。Clin Adv Hematol Oncol。2019; 17(6):344–351。 15。 Srivastava A,Santagostino E,Dougall A等。 WFH管理血友小组成员和合着者的指南。 WFH血友病管理指南,第三版。 血友病。 2020; 26(增刊6):1-158。 doi:10.1111/hae140462019; 17(6):344–351。15。Srivastava A,Santagostino E,Dougall A等。WFH管理血友小组成员和合着者的指南。WFH血友病管理指南,第三版。血友病。2020; 26(增刊6):1-158。doi:10.1111/hae14046
在这一问题的血栓形成和止血问题中,Li等人提供了COVID-19患者血栓形成生物标志物的进一步见解。17在使用两样本的孟德尔随机分析(MR)的回顾性分析中,他们评估了COVID-19患者的20个生物标志物之间的关系,包括非医院,住院和重症患者,包括非医疗化,住院和重症患者。来自基因组广泛研究研究(GWAS)的数据分析了来自37例CoVID-19的37例患者,以及来自22个同龄人的9,986例住院CoVID患者的GWAS荟萃分析,以及来自5,101名和4,792例患者的5,101例和4,792例患者的患者,分别为15和15例研究。主要发现的是Covid-19患者的组织因子途径抑制剂(TFPI)的水平较低,IL-1受体1型(IL-1R1)的水平较低。此外,COVID-19患者表现出较低水平的多凝结因子缺乏效率蛋白2的趋势,C - C型基序趋化因子3。此外,患有COVID-19的患者的纤溶酶原激活剂,组织型纤溶酶原激活剂和P-选择蛋白糖蛋白配体的水平较低。最后,作者确认了较早的发现患者的平均血小板体积和较低的血小板计数。作者提供了一个非常大的数据集中的信息,这些信息似乎可以对COVID-19患者的血栓形成和炎症机理产生新的见解。TFPI是组织因子诱导的凝血途径的关键抑制剂。动物模型中的发现表明TFPI在衰减动脉血栓形成中的作用,18
2019年10月,Novo Nordisk在血友病A或B患者的患者中启动了Explorer7 3阶段临床试验,并具有针对FVIII或FIX的抑制剂。该试验的目的是建立在笔装置中传递的一次预防性皮下consizumab的安全性和功效,以减少出血数量。在没有抑制剂的血友病A或B患者中进行的平行3期试验,Explorer8于2019年11月开始。试验将招募来自32个国家 /地区的293名患者。试验于2020年3月暂停。
angptl1¼血管生成素相关蛋白1; Asgr1¼Asialogoprotoin受体1; CC4D¼心脏图ÞC4D; CCL17¼C-C基序趋化因子17; ckb¼中国kadoorie生物库; EFNA1 ephrin-a1; F2R¼蛋白酶激活的受体1; Furin¼Furin; ID¼标识; IHD¼缺血性心脏病; MAF¼小等位基因频率; mmp3¼基质金属蛋白酶-3; OBP2B¼气味结合蛋白2b; PGF¼胎盘生长因子; reg1b¼岩性磷酸1-β;排序1¼Sortilin; tchem¼t化学; tclin¼t-t-linical; TFPI¼组织因子途径抑制剂; tnc¼tenascin; UKB¼UKBIOBACE。
•Alhemo是组织因子途径抑制剂(TFPI)拮抗剂,并且在同类中批准了第二种药物。在2024年10月11日,FDA批准了辉瑞的Hympavzi(Marstacimab-HNCQ),除了没有抑制剂的患者外,在血友病A和B中也有类似的迹象。•ALHEMO的疗效是在91名成人和42名青春期男性A或B患有抑制剂的成年和42例青春期男性患者中建立的,这些患者已开处方或需要用旁路药物治疗。该研究包括52例先前接受过点播治疗的患者,随机分配为无预防(ARM 1:按需用旁路剂治疗)或Alhemo Prophaxis(ARM 2)。
最近的政治动荡凸显了了解伽马射线暴露对人类健康和生存能力的短期和长期影响的重要性。在这方面,在发生核灾难的情况下,对急性放射综合征 (ARS) 进行有效治疗是必要的。在这里,我们提出了 20 个 ARS 治疗靶点,这些靶点是使用系统方法确定的,该方法整合了人类和小鼠在放射治疗下获得的基因共表达网络、药物数据库、疾病基因关联、辐射诱导的差异基因表达和文献挖掘。通过选择具有现有药物的基因靶点,我们确定了药物再利用的潜在候选基因。其中八个基因 (BRD4、NFKBIA、CDKN1A、TFPI、MMP9、CBR1、ZAP70、IDH3B) 已通过文献证实在扰动时显示出放射保护作用。这项研究为使用集成多种生物信息的系统级基因关联治疗 ARS 提供了一个新的视角。所确定的基因可能为 ARS 的潜在药物再利用提供高可信度的药物靶点候选基因。
f i g u r e 1凝血级联和凝血酶生成曲线。(a)通过组织因子(TF)途径激活下凝结级联反应网络。在此处的模拟中不包含蛋白C(PC)的反应,因为它们需要细胞表面结合的血小板调节蛋白(TM)和内皮PC受体以显着量激活。(b)凝血因子浓度的森林图,证明了健康个体的典型范围。因子(F)XI的水平取自Mohammed等。[1],所有其他健康的范围和浓度均来自Danforth等。[2]。(c)凝血酶生成曲线的一个示例,说明了可以得出的摘要统计信息。峰值和峰值的时间是最大凝血酶浓度,分别是达到它的时间。滞后时间是达到峰高的5%的时间。内源性凝血酶电位(ETP)是凝血酶生成曲线的积分。最大增加速率(最大INC率)和最小降低率(最低DEC率)分别是凝血酶生成曲线梯度的最大正值和负值。apc,活化的蛋白C;在,抗凝血酶; TFPI,组织因子途径抑制剂。
ACA抗抑制剂抗体APC激活的蛋白C apla抗磷脂抗体APS抗磷脂抗体综合征在抗凝血酶中; antithrombin III AvWS acquired von Willebrand syndrome CLSI Clinical Laboratory Standards Institute (formerly NCCLS) DIC disseminated intravascular coagulation DOAC direct oral anticoagulant dRVVT dilute Russell viper venom time DTI direct thrombin inhibitor ELISA enzyme-linked immunosorbent assay FDP fibrin degradation products (aka fibrin split products) FEU fibrinogen equivalent units FVL factor V Leiden HIT heparin-induced thrombocytopenia HMWK high-molecular-weight kininogen HMWM high-molecular-weight multimer HSP Henoch-Schönlein purpura INR international normalized ratio ISI international sensitivity index ISTH International Society on Thrombosis and Haemostasis LMWH low molecular weight heparin NHLBI National Heart, Lung, and Blood Institute NIH National Institutes of Health NORD National Organization for Rare Disorders PAI-1 plasminogen activator inhibitor-1 PF4 platelet factor 4 PT prothrombin time PTT partial thromboplastin time RT reptilase time RVVT Russell viper venom time SLE systemic lupus erythematosus SSC Scientific和标准化小组委员会(ISTH的)TEG®血栓射击TFPI组织因子途径抑制剂TPA组织纤溶酶原激活物;组织型纤溶酶原激活剂TT凝血酶时间;凝血酶凝结时间; TCT TCT TTP血栓细胞减少紫菜UFH未分离的肝素VTE静脉血栓栓塞VWD VON WILLEBRAND疾病vwf vwf von von von von von von von willebrand因子