自闭症谱系障碍 (ASD) 等神经发育疾病的早期诊断仍是一个尚未得到满足的需求。其中一个困难是识别与 ASD 表型相关的生物信号。视网膜电图 (ERG) 波形已被确定为可能对 ASD 等神经系统疾病进行分类的信号。ERG 波形源自光感受器和视网膜神经元对短暂闪光的响应而产生的电活动,为中枢神经系统提供了一个间接的“窗口”。传统上,波形是在时域中进行分析的,但最近,人们已成功地使用离散小波变换 (DWT) 对 ERG 进行了时频频谱 (TFS) 分析,以表征信号的形态特征。在本研究中,我们建议使用高分辨率 TFS 技术,即变频复合解调 (VFCDM),根据两个信号闪光强度分解 ERG 波形,以建立机器学习 (ML) 模型来对 ASD 进行分类。其中包括 N = 217 名受试者(71 名 ASD 患者,146 名对照患者)在两种不同闪光强度,446 和 113 Troland 秒 (Td.s) 下的右眼和左眼的 ERG 波形。我们使用 DWT 和 VFCDM 分析了原始 ERG 波形。我们从 TFS 中计算特征并训练 ML 模型(例如随机森林、梯度提升、支持向量机)以将 ASD 与对照患者进行分类。使用独立于受试者的验证策略对 ML 模型进行了验证,我们发现具有 VFCDM 特征的 ML 模型优于使用 DWT 的模型,实现了 0.90 的受试者操作特性曲线下面积(准确度 = 0.81、灵敏度 = 0.85、特异性 = 0.78)。我们发现与较低频率相比,较高频率范围(80 – 300 Hz)包含更多与 ASD 分类相关的信息。我们还发现,右眼中更强的 446 Td.s 闪光强度提供了最佳分类结果,这支持对 ERG 波形进行 VFCDM 分析,作为辅助识别 ASD 表型的潜在工具。
开发是一种链反应,其中一个事件导致另一个事件直到完成生命周期。相变是生命周期中的里程碑事件。叶状cotyledon1(Lec1),ABA nosistive3(ABI3),FUSCA3(FUS3)和LEC2蛋白(同时称为LAFL)是调节种子和其他发育过程的主转录因子(TFS)。自从LAFL基因的最初表征以来,超过三十年的积极研究产生了有关这些TF的大量知识,这些TF在种子降低和发芽中的作用已得到了全面审查。使用遗传和基因组工具的细胞生物学的最新进展允许以较高的参考物种和农作物的较高吞吐量和分辨率在先前具有挑战性的组织中表征LAFL调节网络。在这篇综述中,我们通过整合表观遗传,转录,转录后和蛋白质水平的进步来提供整体观点,以扩大拟南芥种子发育和相变的LAFL网络的时空调节,并简要讨论这些TF网络的进化。
心脏发育是通过几种转录因子(TF)和染色质修饰剂的复杂共同指导作用来实现的,以指导及时激活特种基因。这串联的转录事件可确保适当的细胞和结构提示从心脏新月生成复杂的四腔结构。先天性心脏缺陷(CHD)是发育中的心脏的畸形,并且在100个活产中至少发生(van der Linde等人。2011)。有些非常严重,导致新生儿死亡或需要复杂的心脏手术。通常,维修仅提供临时解决方案,几年后,这种情况需要心脏移植。此外,结构性CHD可以伴随物理缺陷,例如异常的冲动传导或心力衰竭。冠心病患者的结构缺陷通常与基因调节剂中的突变有关,这些突变在非常早期的心脏病发生中起作用,包括TFS,Chromein Regodeling因子和信号分子(Nees and Chung 2019; Morton等人2022)。但是,疾病促性变体之间的链接和由此产生的心脏
背景:门静脉肿瘤血栓形成(PVTT)是晚期肝细胞癌(HCC)的频繁而严重的并发症,通常会导致预后不良。尽管PVTT具有显着的临床相关性,但驱动其形成的分子机制尚不清楚。长的非编码RNA(LNCRNA)已成为PVTT进展的潜在贡献者,促使这项研究探索LNCRNA作为PVTT的潜在生物标志物。方法:我们分析了来自基因表达综合的公开可用数据集,以识别三个比较的差异表达的LNCRNA和mRNA:正常与HCC,正常与PVTT和HCC与PVTT。转录曲线,并使用在线数据库筛选了与HCC和PVTT特异性LNCRNA相互作用的蛋白质,表明所有相互作用的蛋白质都是转录因子(TFS)。我们通过从每次比较中与TF靶基因与差异表达的基因(DEG)相交的LNCRNA – TF – TF -TARGAT基因调节网络。蛋白质 - 蛋白质相互作用(PPI)网络分析以识别关键簇和集线器基因,并突出显示了AR和ESR1之类的TF。进行了基因本体分析,以了解调节网络的生物学功能。结果:该研究确定了正常,HCC和PVTT样品的不同转录曲线。构建了涉及LNCRNA,TFS和靶基因的关键调节网络,并将包括AR和ESR1在内的重要集线器基因确定为潜在的治疗靶标。PPI网络分析揭示了与PVTT进展相关的重要集群,而基因本体分析则提供了对相关生物学功能的见解。结论:本研究提出了一个新的理解LNCRNA – TF介导的基因调节的框架。它确定了潜在的治疗靶标和预后生物标志物,这些靶标可以促进PVTT的靶向疗法的开发,从而提供新的机会来改善临床结果。
过敏(DIR)蛋白是木质素和木质蛋白生物合成的关键调节剂,在植物激素反应,非生物胁迫耐受性以及生长和发育中起关键作用。这项研究鉴定并表征了Moso Bamboo中的47个Pedir基因,将其分为三组。系统发育和比较分析显示出强烈的进化保守性,Moso Bamboo Pedir基因与水稻和玉米中的基因密切相关。dir蛋白在每个亚家族中均表现出较高的基序组成,结构域结构和3D配置。亚细胞定位和蛋白质相互作用研究进一步阐明了踏板基因的功能。特别是PEDIR02主要定位于细胞膜,被证明无法在酵母两杂交(Y2H)测定中形成同型二聚体。转录组和表达分析揭示了Pedir基因在快速芽生长中的参与,表明在木质素生物合成和细胞壁修饰中作用。转录组和QRT-PCR数据还证明了这些基因对激素和非生物胁迫(例如干旱和盐度)的反应性。这项研究构建了转录因子(TFS)和PEDIR基因之间的第一个全面的调节网络,将ERF,DOF和MYB TFS识别为PEDIR基因表达的关键协同调节剂。
转录因子(TFS)对于调节基因表达和细胞命运测定至关重要。表征TF基因在时空和时间上的转录活性是了解复杂生物系统的关键步骤。苔藓植物的营养植物分子分生组织具有一些特征,可以与流动植物的芽根尖分生组织具有。然而,与配子植物组织相关的TF的身份和表达方法在很大程度上尚不清楚。只有约450个假定的TF基因,马尔丁塔蒂亚(马丁坦蒂亚多形)是植物系统生物学的出色模型系统。我们已经产生了来自Marchantia TF基因的启动子元素的近乎完整的集合。我们在集合中为所有TF启动子进行了经验测试的记者融合,并系统地分析了Marchantia Gemmae中的表达模式。这使我们能够在早期营养发展中构建表达域的图,并确定一组在干细胞区域中活跃的TF衍生启动子。细胞标记提供了其他工具,并深入了解了配子分生组织的动态调节及其进化。此外,我们为集合中的所有启动子提供了在线表达模式的在线数据库。我们期望这些启动子元素将有助于细胞类型特异性,合成生物学应用和功能基因组学。
转录调控是一个复杂的过程,涉及特定染色质环境中的一系列蛋白质活动。转录因子 (TF) 是此过程的主要贡献者,它们与伙伴、辅激活因子或表观遗传因子一起发挥作用,其中一些被称为先驱 TF,能够使染色质结构允许辅激活因子和表观遗传因子的作用。表观遗传景观在造血稳态和分化程序中起着重要作用;因此,有可能从染色质动力学构建一个完整的造血模型 ( 1 , 2 )。编码表观遗传修饰因子 (TET2、IDH1 / 2、DNMT3A 和 ASXL1) 的基因突变在急性髓系白血病 (AML) 患者中很常见,进一步表明这种类型的成分在驱动 AML 发展中起着重要作用。 TF SPI1 / PU.1 属于 E26 转化特异性 (ETS) 家族,是造血控制的主要贡献者,在髓系和 B 淋巴系的特化和分化中发挥积极作用 ( 3–5 )。SPI1 最初被描述为一种转录激活因子,被认为是一种先驱 TF,因为它能够结合或接近封闭的核小体构象,并使辅因子能够结合染色质 ( 6–9 )。例如,在巨噬细胞中,SPI1 通过结合封闭的染色质来激活其靶基因的转录,在那里它通过募集表观遗传修饰因子(如 CBP/P300 或 SWI/SNF 复合物)来驱逐核小体 ( 6 、 7 、 10 、 11 )。这一动作指示创建一个新的增强子,使组蛋白 3 的赖氨酸 4 (H3K4me1) 单甲基化,并在增强子位点募集额外的 TF (6,7)。SPI1 通过表观遗传调控控制转录激活的功能在 B 淋巴细胞和破骨细胞分化中也有描述 (12,13)。因此,除了与谱系决定辅因子协同控制基因表达方面发挥众所周知的作用外,SPI1 对转录活性的影响还与表观遗传调节因子协同介导。最近有报道称,SPI1 在正常造血、控制适当的中性粒细胞免疫反应 (14)、早期 T 细胞 (15,16) 和破骨细胞 (12) 中抑制转录。实现更好的
Cellestia Biotech启动了新的药物发现计划,以针对瑞士巴塞尔的靶向转录因子 - 2020年12月7日 - Cellestia Biotech,专门针对参与人类疾病的转录因子(TFS)的新药启动了一项针对TFS的新药物发现计划。该计划解决了癌症,自身免疫性和炎症性疾病(AIIDS)的未满足医疗需求,该计划与肿瘤学Unil Chuv肿瘤学系的Vincent Zoete教授合作,Ludwig癌症研究所,Lausanne和Sib Swiss Institute of BioInienformancics of Bioineformanced and OnsoseSesesesesse。Zoete教授的实验室专门研究蛋白质工程和药物设计的计算机辅助算法,程序和数据库。Cellestia在TFS领域具有深入的经验。Cellestia的铅分子CB-103是Notch TF复合物的第一类抑制剂。临床第1阶段的数据表明,在没有任何严重毒性的情况下,CB 103是第一种可以有效,安全地控制致癌途径激活的药物。新药物发现计划的目标是称为MYB。MYB是癌症中药物开发的有效靶标。 由于基因融合和过表达,蛋白质在几种人类癌症(ACC,BC,AML,血管中心胶质瘤)中被组成式激活。 为期两年的计划旨在使用最先进的计算机辅助药物设计(CADD)和新型化学技术设计,发现和开发针对TF MYB的药物。 已经将第一类抑制剂运送到诊所后,我们很高兴启动一个新计划,该计划具有将其他创新药物带到诊所的潜力。”MYB是癌症中药物开发的有效靶标。由于基因融合和过表达,蛋白质在几种人类癌症(ACC,BC,AML,血管中心胶质瘤)中被组成式激活。为期两年的计划旨在使用最先进的计算机辅助药物设计(CADD)和新型化学技术设计,发现和开发针对TF MYB的药物。已经将第一类抑制剂运送到诊所后,我们很高兴启动一个新计划,该计划具有将其他创新药物带到诊所的潜力。”Cellestia Biotech的CSO Raj Lehal博士说:“ Cellestia一直处于解决先前被认为是不可用的挑战目标的最前沿,以开发针对癌症和AIID的药物。
摘要人类卵巢卵泡的体外模型将极大地有益于女性繁殖的研究。卵巢发育需要生殖细胞和几种类型的体细胞的结合。其中,颗粒细胞在卵泡形成和对卵子发生的支持中起关键作用。存在有效的方案来产生人类诱导的多能干细胞(HIPSC)的人类原始生殖细胞样细胞(HPGCLC),但产生颗粒细胞的一种方法是难以捉摸的。在这里,我们报告说,两个转录因子(TFS)的同时过表达可以将hipsc的分化指向颗粒样细胞。我们阐明了几种与颗粒相关的TF的调节作用,并确定NR5A1的过表达和Runx1或Runx2足以生成类似颗粒状的细胞。我们的颗粒状细胞具有类似于人类胎儿卵巢细胞的跨文章组,并概括了包括卵泡形成和类固醇生成在内的关键卵巢表型。与HPGCLC聚集时,我们的细胞形成卵巢样类器官(卵形),并支持从迁移到性腺阶段的HPGCLC发育,这是通过诱导DAZL表达来衡量的。该模型系统将为研究人类卵巢生物学提供独特的机会,并可以开发女性再生健康的疗法。
摘要 确定转录因子 (TF) 的体内 DNA 结合特异性几乎完全依赖于染色质免疫沉淀 (ChIP)。虽然 ChIP 揭示了 TF 结合模式,但其分辨率较低。采用核酸酶的高分辨率方法,例如 ChIP-exo、染色质内源性裂解 (ChEC-seq) 和 CUT&R UN,可解决 TF 占用和结合位点保护问题。ChEC-seq 中内源性 TF 与微球菌核酸酶融合,既不需要固定也不需要抗体。然而,有人认为 ChEC 期间 DNA 裂解的特异性低于 ChIP 或 ChIP-exo 识别的峰的特异性,这可能反映了转录因子与 DNA 的非特异性结合。我们简化了 ChEC-seq 协议,以最大限度地减少核酸酶消化,同时提高裂解 DNA 的产量。 ChEC-seq2 的切割模式在重复实验和已发表的 ChEC-seq 数据之间具有高度可重复性。结合 DoubleChEC(一种可去除非特异性切割位点的新型生物信息学流程),ChEC-seq2 为三种不同的酵母 TF 确定了高可信度的切割位点,这些位点因其已知结合位点而高度富集,并且与已知靶基因相邻。