摘要:在当前的研究工作中,试图合成银纳米颗粒(MA -AGNPS)UTI-将Melia Azedarach的成熟果实提取物进行液化。使用各种表征技术,例如紫外线 - 可见光谱分析,热力学分析(TGA)和扫描电子显微镜(SEM)来确认AGNPS合成。通过紫外线可见光谱跟踪生物补充和颜色变化,而sem con -con -con -con -conmend agnps的尺寸为2 - 60 nm。TGA揭示了合成的AGNP的稳定性。根据抑制区(ZI),最小杀菌性核心和对测试细菌菌株的最小抑制浓度评估了基于Azedarach的AGNP和水果提取物的抗菌潜力,其中较高的NPS是NPS的较高活性(P. eruginosa Zi = 22)。2,2-二苯基-1-紫hydrazyl(DPPH)和(2,2-二苯甲酸 - [3-乙基苯甲酰唑啉]] - 6-硫磺
摘要。由于复合材料在强度、刚度和密度方面可以进行定制,因此在航空航天领域是一种宝贵的商品。但是,复合材料也会随着时间的推移而变质,就像其他材料一样,特别是在太空等恶劣条件下。飞机环境中温度突然变化引起的热降解会导致复合材料的尺寸变化、开裂甚至分解,这些降解问题可能会影响复合材料在航空航天中的应用。在本研究中,对碳/酚醛复合材料进行了热重分析 (TGA),作为纤维使用平纹碳纤维 (Kyoto - 碳),作为基质使用 ARMC-551-RN 酚醛树脂。此外,测试方法参考 ASTM E1131-08 标准。热重成分分析测试方法。最终,工程师希望通过使用 TGA 分析来了解用于航天器部件的碳/酚醛复合材料的热特性和稳定性,从而改善航天器的设计、可靠性和严酷太空任务的安全性。
CSL的Seqirus团队进行了数周的重要质量测试,为TGA提供了其他数据来评估每批。每批都经过测试以确保其稳定性和不育 - 并确定疫苗包含正确的抗原(效力测试)
技术技能分析技术:气相色谱(GC),红外光谱法(IR),差异电化学质谱法(DEMS)沉积方法:溅射,湿浸入电化学特征的浸润方法XRD,拉曼,TGA,下注电化学电池设计:燃料电池和电池
2024 年 8 月 1 日重要信息:Q-VAX ® 疫苗 (10041788) 和 Q-VAX ® 皮肤测试 (10040156)(灭活伯氏柯克斯体)尊敬的澳大利亚兽医协会,我代表 Q-vax ® 疫苗和皮肤测试制造商 CSL Seqirus 写信。作为行业主要利益相关者,我想通知您,Q-vax ® 被列为治疗用品管理局 (TGA) 药品短缺数据库中的当前供应短缺。我们目前有库存,并正在密切管理供应,以确保暴露风险最高的澳大利亚人(例如农民、肉类行业工人和兽医)可以使用。CSL Seqirus 已制定计划,以帮助维持 Q 热疫苗的获取,同时我们正在努力增加供应。该计划包括与 TGA、疫苗接种诊所和工作场所密切合作,以确保优先为高风险人群提供可用疫苗。我们正在与一线疫苗接种人员合作:
5'-/rhSeq-r/CAT CTT CCG ATG GCC TTT ATrG GAA A/GT3/-3' 5'-/rhSeq-r/CAT TTC ATC CGT GCT GAG TrGT ACC A/GT4/-3' 5'-/rhSeq-r/CAA ATG GAC GTG TGT AGA GCrC AGA C/GT4/-3' 5'-/rhSeq-r/GGC TCC CGA ATC ATC AArG TCA A/GT4/-3' 5'-/rhSeq-r/ACT AGG TCA AGA AGC ATC AGT rCCC AA/GT2/-3' 5'-/rhSeq-r/TAC ACA AGG AGA ACC ACA GArC TGA C/GT3/-3' 5'-/rhSeq-r/ACA GTG ATT AAT GTC TCTC GCT TTT rCTG/GT1/-3' 5'-/rhSeq-r/AAT CCA CAG TCA AGA TGC ArGA ACA /GT1/-3' 5'-/rhSeq-f/CAG GTC TCA GAA CTG TCC TTrC AGG T/GT1/-3' 5'-/rhSeq-f/TGA ACC AAT CCC TAC CAT CTrC CTT T/GT1/-3'
近年来,由于环境意识,天然纤维及其复合材料吸引了研究人员。必须识别新的纤维素纤维以进行潜在的聚合物增强。在这项研究的第一步中,从阿尔及利亚贝贾亚市山区收集的龙舌兰植物(AALLF)的叶片中提取了新的生态友好纤维素纤维,已被确定为生物 - 复合物的潜在增强材料。通过傅立叶变换红外(FTIR)光谱,Thermos Gravimetric Analysis(TGA/DTG)分析了提取的未处理和碱处理的AALLF的化学,热稳定性和机械礼节,分析了差异扫描(TGA/DTG),差异扫描卡路里量热量(DSC)和单个光纤纤维测试。在FTIR分析中,我们可以观察到在治疗的各个时间的化学处理对峰位置和强度的影响很小。热力计(TGA/DTG)和差异扫描量热法(DSC)分析有助于预测未经处理的AALLF的热行为,并建议热稳定性直至256°C,显而易见的激活能为6.14 J/g。拉伸强度,失败时的应变和Young的模量分别从单个未处理的纤维拉伸试验确定为196±41 MPa,41.45±5.98%和2756±517 MPa。其次,研究了研究纤维分数(x 1),NaOH浓度(x 2),树脂类型(x 3)和治疗时间(x 4)对聚合物生物复合材料的拉伸和弯曲性能的影响。然后使用响应表面方法(RSM)开发了生物复合材料的机械性能的数学模型。
TGA澳大利亚临床试验手册,2021年8月,澳大利亚临床试验手册描述了伦理委员会在临床试验开始之前审查未经认可的治疗产品的临床试验的要求和责任。TGA管理两个方案,允许在澳大利亚进口和/或供应“未经批准的”治疗产品用于临床试验。这些是临床试验通知(CTN)和临床试验批准(CTA)方案。CTN方案用于药物的各个阶段(例如,第三阶段,第四阶段),医疗设备(例如关键研究,市场后研究)和药物和生物学的生物利用度/生物等效性临床试验。如果伦理委员会可以访问足够的专家科学和临床审查,则可以将CTN方案用于早期临床试验。否则,CTA方案可用于高风险研究或新型治疗,例如基因治疗。CTA对于某些产品可能是强制性的。对于医疗设备试验,应考虑CTA方案在实验设备涉及以前在临床试验中尚未评估的元素的情况下。
摘要:本研究使用系统框架研究了包层系统中使用的玻璃棉 (GW) 和挤塑聚苯乙烯 (XPS) 隔热材料的动力学数据。确定适当的动力学特性(例如指数前因子、活化能和反应级数)对于准确模拟隔热材料的全尺寸防火性能至关重要。本研究的主要目的是提取高层建筑中使用的 XPS 和 GW 隔热材料的热和动力学数据。为了获得这些特性,以四种不同的加热速率进行热重分析 (TGA):5、10、15 和 20 K/min。TGA 结果作为使用无模型和基于模型的方法组合确定动力学特性的基础。本研究的结果有望对定义热解反应步骤和提取此类隔热材料火灾建模的动力学数据大有裨益。这些信息将增进对这些材料在火灾事故中的火灾行为和性能的了解,有助于开发更精确的火灾模型并改进高层建筑覆层系统的消防安全策略。
这项研究开发了用于合成一些来自纳米石墨氮化碳(G-C 3 N 4)的新型光催化纳米复合材料,由于甲基蓝色染料作为有机污染物在废水中的有机污染物而导致的甲基蓝色染料降解,氧化物(BI 2 O 3)和纳米氧化烯(NGO)。这些合成的新型三元纳米复合材料,包括BIC 80 /GO,BIC 80 /GO,BIC 80 /GO和BIC 80 /GO,其特征在于FTIR,UV -VIS,XRD,XRD,PL,PL,TGA,TGA,FESEM和ED,用于研究热稳定性,表面形态和纯净的纳米复合物的表面形态和纯度的热稳定性。在这项工作中研究了180分钟的可见光照射下,纳米材料和新型三元纳米复合材料的降解效率(D%)。在pH 12中,在35°C下在35°C下制备三元纳米复合材料BIC 80 /GO(20 mg)的最佳条件。