CRISPR/Cas9 基因组编辑已广泛应用于各种植物物种。创建功能丧失的等位基因、启动子变体和突变体集合只是基因组编辑的众多用途中的几种。在有性生殖物种的典型工作流程中,会生成包含整合的 CRISPR/Cas9 转基因的植物。编辑目标基因后,可以在下一代中识别出仅包含所需编辑的 T-DNA 无效分离子。然而,保留 CRISPR/Cas9 转基因并在后续几代中继续编辑为模型植物和作物提供了一系列应用。在这篇综述中,我们将跨代基因编辑 (TGE) 定义为遗传杂交后继续编辑 CRISPR/Cas9。我们讨论了 TGE 的概念,总结了当前的主要应用,并重点介绍了特殊案例,以说明 TGE 对植物基因组编辑研究和育种的重要性。
来自爱尔兰跨国欧洲TGE(跨国授予欧洲)的是欧洲基础和协会的合作伙伴关系。 它允许捐助者 - 个人和公司 - 在TGE合作伙伴国家之一的财政居民,可以支持其他成员国的慈善组织,同时受益于其居住国立法(www.transnationalgiving.eu)提供的税收优势。 由于最近的法律和财政变化,目前不可能从爱尔兰向巴黎脑研究所捐款,该研究所有资格根据爱尔兰法律获得税收福利。 如果您是希望支持巴黎脑研究所的爱尔兰居民,请联系:是欧洲基础和协会的合作伙伴关系。它允许捐助者 - 个人和公司 - 在TGE合作伙伴国家之一的财政居民,可以支持其他成员国的慈善组织,同时受益于其居住国立法(www.transnationalgiving.eu)提供的税收优势。由于最近的法律和财政变化,目前不可能从爱尔兰向巴黎脑研究所捐款,该研究所有资格根据爱尔兰法律获得税收福利。如果您是希望支持巴黎脑研究所的爱尔兰居民,请联系:
抽象混合可再生能源系统是对发展中国家能源不足遭遇的一个很好的解决方案。本文介绍了混合可再生能源系统的最佳设计,即技术方面的损失,即电源损失(LPSP),经济方面是电力成本(COE)和净现在成本(NPC)和环境方面,即使用多型粒子粒料优化的型号的跨度型号,是整个温室气体(TGE)的全面温室气体(TGE)方面,用于跨越型号的杂物。最佳配置包括光伏(PV),风能,电池和柴油发电机(DG),分为场景1-7的混合能量系统,以具有最合适的场景。方案3(带有PV,电池和DG的混合系统),电源概率损失,电力成本,净现在成本和排放量为0.003%,0.132 $/kWh,38,817.7 $和2.2 kg/年,发现最适合社区多媒体中心。
背景 EnerGRotors, Inc. 销售的专利设备是经济地利用低温热能发电的突破。工业流程、商业建筑、太阳能集热器、地热源、生物质锅炉和内燃机中都存在低温热源。该公司拥有一项名为摆线齿轮发动机 (TGE™) 的专利技术的独家许可,该技术比现有技术更高效、更具成本效益且更耐用。该公司将很快开始商业化 GEN4,这是一种针对工业废热市场的 40 至 60 千瓦系统。将这种低温热能经济地转化为电能并实现更高能源效率的全球市场规模估计超过 200 亿美元。
简介:猪轮状病毒疫苗是一种改良活病毒,含有 2 种改良活 G 血清型 5 和 4 血清型 A 轮状病毒,这些病毒经过改良后不会对幼猪、育肥猪或怀孕猪造成疾病。建议使用这种疫苗来预防幼猪轮状病毒性腹泻。轮状病毒是病毒性胃肠炎的一种病因,其特征是幼猪呕吐、水样腹泻、脱水和死亡;因此,其临床症状可能与 TGE 相同。这种疾病在哺乳猪和断奶猪中都很常见,到目前为止,所有接受检查的猪群都显示出该疾病的血清学证据。轮状病毒疫苗对怀孕母猪和幼猪均有疗效。对哺乳猪进行口服和肌肉注射疫苗接种可诱导主动免疫,并保护它们免受断奶后轮状病毒引起的腹泻。建议通过实验室确认小猪腹泻的原因,因为其他病毒、细菌和球虫病原体也可能导致类似的疾病症状。
ANC 非洲人国民大会 AZAPO 阿赞尼亚人民组织 CSP 首席特别检察官 EC 埃塞俄比亚日历 EHRCO 埃塞俄比亚人权理事会 EPLF 厄立特里亚人民解放阵线 EPRA 埃塞俄比亚人民革命军 EPRDF 埃塞俄比亚人民革命民主阵线 EPRP 埃塞俄比亚人民革命党 EWLA 埃塞俄比亚女律师协会 FDRE 埃塞俄比亚联邦民主共和国 ICCPR 公民权利和政治权利国际公约 ICESCR 国际经济、社会和文化权利盟约 Ma'ison/ 阿姆哈拉语“全埃塞俄比亚社会主义运动”的缩写 Meison党 OLF 奥罗莫解放阵线 PDO 公设辩护人办公室 PGE 埃塞俄比亚临时政府(1991 年 6 月) PM 总理 PMAC 临时军事管理委员会(Derg) POMOA 群众组织事务临时办公室 PPG 临时人民政府 PSC 和平与稳定委员会 SPO 特别检察官办公室TGE 埃塞俄比亚过渡政府(1991 年 6 月 - 1995 年 5 月) TPLF 提格雷人民解放阵线 TRC 真相与和解委员会(南非) WPE 埃塞俄比亚工人党(由 Derg 成员建立的政党) UDHR 世界人权宣言
评估活动 标题 权重 小时* 学习成果 道德困境案例研究 10% 20 1,2,3,7 在线讨论 5% 5 1,2,3,4,5,8 文章评论 10% 20 1,2,4,5,8,9 小组项目 25% 52 1,2,3,5,7,8,9,10 道德规范和指南 5% 10 1,6,8 参与 20% 39 1,2,7,8 期中考试 10% 2 2,3,8,10 期末考试 15% 2 2,3,8,10 *小时包括自主工作 参考书目 本课程没有必修教科书。以下列表显示了一些推荐阅读材料,均与课程内容相关。Bartneck, C.、Lütge, C.、Wagner, A. 和 Welsh, S. (2021)。机器人和人工智能伦理学导论。Springer Nature。Boddington, P. (2023)。人工智能伦理学:一本教科书。Springer Nature。Boylan, M. 和 Teays, W.(Eds.)。(2022)。人工智能、技术和信息时代的伦理。Rowman 和 Littlefield。Coeckelbergh, M. (2020)。人工智能伦理。麻省理工学院出版社。Mazzi, F. 和 Floridi, L. (2023)。可持续发展目标中的人工智能伦理。Springer International Publishing AG。Risse, M. (2023)。数字时代的政治理论:人工智能可能带我们去哪里。剑桥大学出版社。Vallverdú, J.(Ed.)。(2023)。人工智能和机器人中的性别:从跨学科视角看性别挑战 (Vol.235)。Springer Nature。软件 本课程要求使用 Canvas 作为 LMS。
汽车: Christoph Lütge 1;弗朗西斯卡·波斯勒 2;艾达·华金·阿科斯塔 3;大卫丹克斯 4 ;盖尔·戈特勒 5 ;尼古拉·卢西安·米赫特 6;艾莎·纳西尔 7 岁;银行与金融:Nir Vulkan 8;艾莎·纳西尔 7 岁;弗兰克·麦格罗蒂 9 ;朱莉娅德尔甘巴 10;约翰·库克 11;灯柱 12;保罗·乔里昂 13;拉斐拉·多尼尼 14 岁;能源:Nicolae Lucian Mihet 6;阿夫扎尔·S·西迪圭 15;福斯托·佩德罗·加西亚·马尔克斯 16 岁;罗南肯尼迪 17;塞尔吉奥·萨波纳拉 18;医疗保健:Raja Chatila 19;斯蒂芬科里罗宾逊 20;唐纳德·科姆斯 21;保拉·博丁顿 22 岁;埃尔韦·施奈维斯 23 岁;尤金尼奥·古列尔梅利 24 岁;丹尼范罗伊恩 25;乔斯杜莫提尔 26 岁;莱昂纳多卡利尼 27 岁;保险:Frank McGroarty 9 ;詹维托·兰佐拉 28 岁;尼尔火神 8;保罗·乔里昂 13;帕特里斯查泽兰 29 岁;鲁伊·马努埃尔·梅洛·达席尔瓦·费雷拉 30;蒂尔曼·亨格沃斯 31;泽尼亚·齐乌维卢 32 岁;法律服务业:Burkhard Schafer 33;科妮莉亚·库特勒 34 岁;伊丽莎白·施陶德格 35 岁;尤多西亚·内兰茨 36;雅各布·斯洛瑟 37;杰米·J·贝克 38 岁;米雷耶·希尔德布兰特 39 岁;罗南肯尼迪 17;媒体与技术:乔·皮尔森 40;斯蒂芬科里罗宾逊 20;保拉·博丁顿 22 岁;帕特里斯查泽兰 29 岁;阿芙拉·蔻儿 41 岁;斯蒂芬妮亚米兰 42 岁;冯斯·维贝克 43;科妮莉亚·库特勒 34 岁;尤多西亚·内兰茨 36;伊丽莎白·克罗西克 44;诺伯托安德拉德 45;詹妮·埃尔维利德 46。
a 汕头大学生物系,广东汕头 515063,中国 b 汕头大学广东省海洋生物技术重点实验室,广东汕头 515063,中国 c 悉尼科技大学土木与环境工程学院,百老汇,新南威尔士州,2007,澳大利亚 关键词:CRISPR-Cas;生物燃料;代谢通量;基因调控;脱靶效应 摘要 随着合成生物学和代谢工程领域的快速发展,有可能应用以最大化产量和生产率来生成各种先进的生物燃料,以实现更可持续的生物过程并减少碳足迹。在众多的分子生物学工具中,成簇的规律间隔短回文重复序列-CRISPR 相关蛋白 (CRISPR-Cas) 技术脱颖而出,具有潜在的靶向基因组编辑能力,与锌指核酸酶 (ZFN) 和转录激活因子样效应核酸酶 (TALEN) 等前辈相比,其基因敲除和敲入系统更精确、更准确。有报道涉及用于生物燃料生产的先进微生物基因组工程工具;然而,缺乏关于基于 CRISPR-Cas 的技术在改进生物燃料生产中的全面综述,以及减少脱靶效应以确保该方法成功和安全的策略。因此,在这篇综述中,我们试图系统地评论 CRISPR-Cas 的机制及其在微生物生物燃料生产中的应用。这包括生物乙醇、生物丁醇以及其他碳氢化合物,它们依次遵循各种建议来提高靶向基因的效率。本文还讨论了可诱导的开/关基因回路在响应环境刺激时在靶向基因组编辑 (TGE) 调节中的作用,即通过最小化代谢负担和最大化发酵效率。本文考虑了相关的严格监管要求,以确保最小的脱靶切割和最大的效率,以及该技术的完全生物安全性。可以得出结论,CRISPR-Cas 技术的最新发展应该为创建微生物生物炼油厂开辟一条新途径,从而有可能提高生物燃料的生产。