心肌细胞和成纤维细胞蛋白质组景观的抽象病理重编程驱动心脏纤维化的起始和进展。尽管功能障碍性心肌细胞的分泌成为病理成纤维细胞重编程的重要驱动力,但我们对下游分子娱乐体的理解仍然有限。在这里,我们表明心脏成纤维细胞激活(αSMA +)和由TGFβ刺激的心肌细胞的分泌介导的氧化应激与其蛋白质组和磷酸蛋白酶景观的深刻重新编码有关。在成纤维细胞全局蛋白质组中,蛋白质的失调引起的失调与细胞外基质,蛋白质定位/代谢,KEAP1-NFE2L2途径,溶酶体,碳水化合物,碳水化合物的代谢和转录调节。激酶底物富集分析磷酸肽在此重塑过程中激酶(CK2,CDK2,PKC,GSK3B)的潜在作用。 我们验证了酪蛋白激酶2(CK2)在分泌理论治疗的成纤维细胞中的上调活性,药理学CK2抑制剂TBB(4,5,6,7-四氢苯甲酰苯二唑)显着消除了纤维细胞激活和氧化应激。 我们的数据提供了对心肌细胞对心脏成纤维细胞串扰的分子见解,以及CK2在调节心脏成纤维细胞激活和氧化应激中的潜在作用。激酶底物富集分析磷酸肽在此重塑过程中激酶(CK2,CDK2,PKC,GSK3B)的潜在作用。我们验证了酪蛋白激酶2(CK2)在分泌理论治疗的成纤维细胞中的上调活性,药理学CK2抑制剂TBB(4,5,6,7-四氢苯甲酰苯二唑)显着消除了纤维细胞激活和氧化应激。我们的数据提供了对心肌细胞对心脏成纤维细胞串扰的分子见解,以及CK2在调节心脏成纤维细胞激活和氧化应激中的潜在作用。
图 1. 组织中的中性粒细胞分化和特征化。最近在人类和小鼠骨髓中发现了在定点中性粒细胞池 (PreNeu 和 NeP) 中表现出中性粒细胞单能性的祖细胞。这些祖细胞在肿瘤应激下扩增,可用作癌症生物标志物。目前尚不清楚中性粒细胞祖细胞是否适合接受训练或其他调节过程。当中性粒细胞被释放到血液循环中时,它们会发生一种自然的表型转变,称为中性粒细胞衰老,这会严重影响其免疫功能,这种现象可能被操纵用于治疗目的。此外,在体内平衡期间,中性粒细胞可在多种组织中发现,其数量因组织而异。局部微环境如何影响中性粒细胞异质性目前尚不清楚,但有证据表明在病理条件下组织中存在局部诱导的重编程和异质性。在肿瘤中,TGFβ 或 I 型 IFN 等因子被认为可促进中性粒细胞原位极化。我们提出存在组织“微环境”,它们可重新编程中性粒细胞的命运,类似于之前对其他髓系亚群的描述。
摘要:先天性心脏病(CHD)是一种出生时即存在的畸形,由胎儿时期心脏及大血管发育异常引起。转化生长因子β活化蛋白激酶1(MAP3K7)结合蛋白2(TAB2)基因在胚胎时期心脏组织发育中起重要作用,当单倍体剂量不足时可导致CHD或心肌病。本研究报道了一例中国生长受限合并CHD患儿的病例研究。全外显子组测序结果提示TAB2发生了新的移码突变(c.1056delC/p.Ser353fsTer8),该患儿父母该位点为野生型,因此可能是从头突变。体外构建突变质粒,Western blotting结果显示该突变可能停止蛋白表达,提示该突变具有致病危害性。总之,本研究强调,无论家族中是否有 CHD 或心肌病病史,都应对不明原因身材矮小和 CHD 患者进行 TAB2 缺陷检查。本研究提供了有关突变谱的新数据,并为第二次怀孕和患者父母的遗传咨询提供了信息。
• 使用 SLEEK ™ 方法,用工程化的 AsCas12a 编辑 iPSC,敲入 CD16 和 mbIL-15。3 同时,还用 AsCas12a 编辑 iPSC,敲除 CISH 和 TGFβR2。然后将 iPSC 克隆分化为 iNK 细胞。流式细胞术证明 DKI iNK 细胞表面表达 CD16 和 mbIL-15。• 使用 Incucyte ® 成像 NucLight Red 标记的 SK-OV-3 细胞进行 3D 肿瘤球体杀伤试验,以评估 iNK 细胞的细胞毒性。通过在基础培养基中培养野生型 (WT) 和 DKI iNK 细胞 21 天(不含支持细胞因子)来测量体外持久性。 • 非肥胖糖尿病 (NOD) 严重联合免疫缺陷 (scid) γ (NSG) 小鼠接种 0.25x 10 6 荧光素酶 (luc) 表达 SKOV-3 细胞系 (SKOV-3-luc) 卵巢肿瘤细胞。小鼠接受单次腹膜内 (IP) 剂量 500 万 WT iNK 或 EDIT-202 细胞,多次 IP 剂量 2.5 mg/kg 曲妥珠单抗 (TRA)。使用 Perkin Elmer 生物发光体内成像系统 (IVIS) 计算肿瘤负荷。披露
安特卫普,比利时,2024年6月6日 - Agomab Therapeutics NV(“ Agomab”)今天宣布,它已从美国食品药品药品监督管理局(FDA)收到了AGMB-447的孤儿药物,其吸入的ALK5的小分子抑制剂是AGMB-447。Agomab正在评估AGMB-447作为特发性肺纤维化(IPF)的潜在治疗方法(NCT06181370)。FDA的孤儿药物名称计划旨在促进针对美国影响少于200,000人的罕见疾病的药物治疗。该指定为公司提供各种开发和商业福利,包括市场排他性和一系列经济激励措施,例如减免临床研究成本。“从FDA接收孤儿药物,为AGMB-447的行动机制提供了进一步的支持,有可能对IPF患者获得有意义的治疗益处。“随着我们正在进行的人类第一阶段1试验的进展,我们期待评估健康受试者和IPF患者的单一升剂剂量和对AGMB-447的多个上升剂量评估的数据。” AGMB-447是一种调查药物,不受任何监管机构的批准。尚未确定其功效和安全性。大约AGMB-447 AGMB-447是一种小分子肺限制性ALK5(或TGFβRI),用于治疗特发性肺纤维化(IPF)和其他纤维化呼吸道指示。结果,纤维化肺变硬,从而阻碍呼吸并减少血液中吸入氧气的吸收。IPF是一种破坏性的疾病,影响了美国100,000名IPF患者的特征是在肺部内积聚的纤维化,疤痕样组织的产生。即使没有一些药物治疗,没有肺移植,但诊断后的平均存活率也只有三到五年。TGFβ是IPF中纤维化的已知主要调节剂,初步临床数据支持针对途径。AGMB-447是专门设计的,可在血浆中的水解中快速代谢,可在肺中有效,安全地抑制ALK5,从而防止临床相关的全身性暴露。关于Agomab Agomab的通过调节纤维化指示中的纤维化和再生来实现疾病的修饰,例如纤维固化的克罗恩病和特发性肺纤维化。 我们通过针对生物学验证的途径来做到这一点,包括转化生长因子β和肝细胞生长因子 - 以及通过在器官限制的小分子和高亲和力抗体中应用专门的能力。 具有差异化的临床管道,包括几种纤维化疾病,端到端的研发能力,经过验证的BD轨道纪录和强大的投资者基础,Agomab正在建立一家领先的欧洲生物制药公司。通过调节纤维化指示中的纤维化和再生来实现疾病的修饰,例如纤维固化的克罗恩病和特发性肺纤维化。我们通过针对生物学验证的途径来做到这一点,包括转化生长因子β和肝细胞生长因子 - 以及通过在器官限制的小分子和高亲和力抗体中应用专门的能力。具有差异化的临床管道,包括几种纤维化疾病,端到端的研发能力,经过验证的BD轨道纪录和强大的投资者基础,Agomab正在建立一家领先的欧洲生物制药公司。
肾小球滤过依赖于肾小球基底膜的 IV 型胶原 (ColIV) 网络,即包含 ColIV 的 α 3、α 4 和 α 5 链的三螺旋分子。编码这些链的基因 (Col4a3、Col4a4 和 Col4a5) 的功能丧失突变与 Alport 综合征 (AS) 中观察到的肾功能丧失有关。对病理机制的细胞基础的准确理解仍然未知,并且目前尚无针对此疾病的特定疗法。在这里,我们生成了一个新等位基因,用于在小鼠的不同肾小球细胞类型中条件性删除 Col4a3。我们发现足细胞在发育中的肾小球基底膜中特异性地产生 α 3 链,并且其缺失足以损害 AS 中所见的肾小球滤过。接下来,我们表明,通过 TGF β 1 增强的水平基因转移以及使用同种异体骨髓间充质干细胞和诱导性多能干细胞,可以挽救 Col4a3 表达并恢复缺乏 Col4a3 的 AS 小鼠的肾功能。我们的概念验证研究支持水平基因转移(例如细胞融合)可以实现 Alport 综合征的细胞治疗。
癌症幸存者接受治疗面临的患有动脉粥样硬化心血管疾病(CVD)的风险增加,但潜在的机制仍然难以捉摸。最近的研究表明,化学疗法可以推动衰老癌细胞获得被称为衰老相关的干性(SAS)的增殖表型。这些SAS细胞表现出增长和对癌症治疗的耐药性,从而导致疾病进展。内皮细胞(EC)衰老与包括癌症幸存者在内的动脉粥样硬化和癌症有关。癌症治疗方式可以诱导EC衰老,从而导致SAS表型的发展和随后的癌症幸存者动脉粥样硬化。因此,针对显示SAS表型的衰老EC是一种治疗该人群动脉粥样硬化CVD的治疗方法的希望。本综述旨在提供对EC中SAS诱导及其对癌症幸存者动脉粥样硬化的贡献的机械理解。我们深入研究了EC衰老的基础机制,这些机制响应于流动的流量和电离辐射,这些辐射在动脉粥样硬化和癌症中起着关键作用。关键途径,包括P90RSK/TERF2IP,TGFβR1/SMAD和BH4信号传导作为癌症治疗的潜在靶标。
肾小球滤过依赖于肾小球基底膜的 IV 型胶原 (ColIV) 网络,即包含 ColIV 的 α 3、α 4 和 α 5 链的三螺旋分子。编码这些链的基因 (Col4a3、Col4a4 和 Col4a5) 的功能丧失突变与 Alport 综合征 (AS) 中观察到的肾功能丧失有关。对病理机制的细胞基础的准确理解仍然未知,并且目前尚无针对此疾病的特定疗法。在这里,我们生成了一个新等位基因,用于在小鼠的不同肾小球细胞类型中条件性删除 Col4a3。我们发现足细胞在发育中的肾小球基底膜中特异性地产生 α 3 链,并且其缺失足以损害 AS 中所见的肾小球滤过。接下来,我们表明,通过 TGF β 1 增强的水平基因转移以及使用同种异体骨髓间充质干细胞和诱导性多能干细胞,可以挽救 Col4a3 表达并恢复缺乏 Col4a3 的 AS 小鼠的肾功能。我们的概念验证研究支持水平基因转移(例如细胞融合)可以实现 Alport 综合征的细胞治疗。
转化生长因子 (TGF)- β 是一种多功能细胞因子,几乎所有组织和细胞类型均有表达。TGF- β 的信号转导可刺激多种细胞反应,对胚胎发育、伤口愈合、组织稳态和健康中的免疫稳态尤为重要。TGF- β 的功能障碍可在许多疾病中发挥关键作用,并且已开发出许多靶向疗法来纠正其致病活性。在过去的几十年中,已经开展了大量关于 TGF- β 信号转导的研究,涵盖了健康、疾病和治疗学的广泛主题。因此,需要对 TGF- β 信号转导进行全面概述,以全面了解该领域的研究。在这篇综述中,我们回顾了 TGF- β 的研究历史,并介绍了其生物合成、活化和信号转导的分子机制。我们还深入了解了 TGF- β 信号在生理条件和病理过程中的功能。 TGF- β 靶向治疗为相关疾病的治疗带来了新的希望,本文通过对以往知识的总结和最近的更新,系统地了解 TGF- β 信号传导,以期引起人们对该研究领域的更多关注和兴趣。
痛风是成人最常见的炎性关节炎,由单钠尿酸盐 (MSU) 晶体慢性沉积引起。痛风发作通常是自限性炎症反应,表现为关节红肿和剧烈疼痛在 7-10 天内消失,并且可能与抗炎因子如转化生长因子 β 1 (TGF β 1)、白细胞介素 (IL)-10 和可溶性肿瘤坏死因子 (TNF) 受体以及细胞内细胞因子负调节剂如细胞因子诱导的含 SH2 蛋白和调节性免疫细胞的快速诱导有关。1 尽管如此,难治性和慢性痛风的患病率和发病率仍在持续增加。因此,问题来了,从痛风发作的自发缓解中可以学到什么,以帮助管理难治性和慢性痛风患者。研究表明,中性粒细胞不仅参与急性炎症的产生,还参与其自我缓解。在吞噬 MSU 晶体后,中性粒细胞会形成中性粒细胞胞外陷阱 (NET),这一过程称为 NETosis,并释放炎性细胞因子。值得注意的是,中性粒细胞达到阈值,大 DNA/MSU