2014 年,当伊斯兰国使用无人机 (UAV) 袭击联军时,无人机的使用范围迅速扩大,使弱国和非国家行为者相对于技术上更先进的敌人拥有不对称优势。这种不对称性导致国防部 (DOD) 和国土安全部 (DHS) 投入巨额资金用于反无人机系统 (C-UAS)。尽管市场密度很高,但许多 C-UAS 技术都使用昂贵、笨重且耗电高的电子攻击方法进行地对空拦截。本论文概述了当前用于 C-UAS 的技术,并提出了使用配备网络攻击功能的机载 C-UAS 巡逻的纵深防御框架。本论文利用空中拦截技术开发了一种新型 C-UAS 设备,称为可拆卸无人机劫持器,这是一种体积小、重量轻、功率大的 C-UAS 设备,旨在使用 IEEE 802.11 无线通信规范对商用无人机进行网络攻击。实验结果表明,可拆卸无人机劫持器重 400 克,功耗为 1 瓦,成本为 250 美元,可以拦截敌方无人机,不会造成意外附带损害。本论文建议国防部和国土安全部采用空中拦截技术来支持其 C-UAS 纵深防御,使用类似于可拆卸无人机劫持器的技术。
•您的博士研究 /论文研究并不是您职业生涯中唯一的主题!•您的论文的特定主题或多或少取决于您未来的职业计划。•所有示例均不相等。
自1985年发现有机C 60富勒烯和1991年的碳纳米管[2]以来,已经发表了许多科学论文,将其物理和化学性质描述为新碳材料[3-6]。引起研究人员极大兴趣的主要特征是富勒烯是一种分子形式[1],碳纳米管被认为是结合分子和固体特性的分子间物质[7]。近年来,对纳米结构的碳材料的需求不断增长,用于微电源[8-9],生物医学[10-11],太阳能[12-14],Photonics [15-16]和纳米工程[17-18]在整体物理学的研究中恢复了整体的研究,从(C 60,C 70)在各种有机和无机溶剂中。The most interesting varieties of supramolecular nanoarchitectures less than 1000 nm in diameter based on fullerenes are nanorods [19–20], nanowires [21–22], nanowhiskers (NWs) [23–24], nanotubes [25–26], and nanosheets [27–28].当前,已经开发了几种方法来获得此类富勒烯纳米结构,特别是蒸发饱和溶液的方法[29-30],模板方法
技术水平 E - 足够。评估论文的专业水平、通过学习和专家文献获得的知识的使用、通过经验获得的来源和数据的使用。所呈现的工作展示了学生理解特定系统功能以及根据需要修改和扩展它的能力。然而,由于设计更复杂的系统的能力,特别是实现它并验证其正确功能的能力,毕业论文在工作中不再明显。论文以学习为主,只有一小部分用于论文提案和主要目标。学生非常积极地描述如何使用 OP UA SDK,但没有充分解释实际硬件中的设计和实现。论文还缺乏对 OPC UA 集成对目标系统的影响的验证(二进制代码分析、响应、可靠性等)。
缩写列表 表格列表 图表列表 1. 引言 1.1. 全球能源趋势 1.2. 摩尔多瓦共和国电力系统的现状 1.3. 摩尔多瓦共和国电力系统的能源转型愿景 1.4. 论文的目的和目标 1.5. 论文结构 2. 摩尔多瓦共和国可再生能源潜力 2.1. 摩尔多瓦共和国的光伏能源潜力 2.1.1. 摩尔多瓦共和国地理一般数据 2.1.2. 自上而下评估光伏能源潜力的方法 2.1.3. 光伏能源潜力评估方法 2.1.4 摩尔多瓦共和国光电技术潜力评估 2.2. 摩尔多瓦共和国的风能潜力 2.2.1. 风能和能源 2.2.2.风能潜力评估方法 2.2.3. 风能图集方法 2.2.4. 摩尔多瓦共和国风能技术潜力评估 3. 可再生能源存在下的电力系统运行 3.1. 大规模将可再生能源整合到电力系统中所面临的挑战 3.1.1. 可再生能源管理 3.1.2. 可变可再生能源对电力系统运行的影响 3.1.3. 可变可再生能源对电力质量的影响 3.1.4. 电力系统的可靠性和弹性 3.1.5. 社会经济和环境方面 3.2. 将可变可再生能源整合到电力系统中的解决方案 3.2.1. 无功功率控制 3.2.2. 使用电力存储系统 3.2.3. 智能电网 3.2.4. 网络安全 3.2.5.可变可再生能源融入电力市场 3.2.6. 通过定价政策促进可变可再生能源 3.3. 风力发电厂和光伏发电厂 3.3.1. 风力发电厂的布局和发电机组的选择 3.3.2. 风力发电厂年发电量估算 3.3.3. 光伏发电厂的布局和装机容量估算 3.3.4. 光伏发电机组的选择和年发电量估算 3.3.5. 研究案例:配电系统中谐波畸变的传播 4. 太阳辐照度和风速预测 4.1. 预测方法 4.1.1. 预测方法分类 4.1.2. 预测方法准确性和误差来源 4.2. 使用聚类技术进行太阳辐照度预测 4.2.1. 聚类预测模型描述 4.2.2. 预测模型的时间序列准备 4.2.3.太阳辐射的标准化和聚类
1.1 IRF5 ..................................................................................................................................................... 6 1.1.1 Cytokine storm ...................................................................................................................................... 6 1.1.2 Autoimmune diseases ............................................................................................................................ 6 1.1.3 COVID-19 ............................................................................................................................................. 7 1.1.4 IRF5 as a therapeutic target ................................................................................................................. 7 1.2 PAMP S ................................................................................................................................................ 7 1.3 C YTOKINES .................................................................................................................................................. 8 1.4 A NALYSIS METHOD .............................................................................................................................. 9 1.5 A IM ...................................................................................................................................................... 9
08033117647抽象将声音插入单词的语音过程对TIV语言的说话者来说并不陌生,因为将贷款词引入了TIV语言。这些英语贷款 - 带来了元音和辅音插入。本文的目标是:对遗传进行分类;讨论标本对TIV音节结构的影响;在TIV语言中陈述标本的功能,并在TIV语音学中制定墓穴规则。本文采用了由Chomsky和Halle(1968)普及的生成语音理论,该理论标志着生成语音学的出现是一种新的理论和描述框架。已经观察到插入主要发生在贷款词中,原因是放松这种借来的词的发音。因此,建议向小学,中学和第三级机构的学生教授TIV语言,以便他们知道何时插入
1 无机和分析化学,2 制药,3 无机和分析化学,维沙卡帕特南,530003,印度。摘要:纳米材料的生产和应用研究已经开展多年。由于基本元素钼和另一种化学元素硫(氧族元素)的性质不同,它们具有各种吸引人的特性。尽管我们对二硫化钼纳米粒子的成核、发展和结构所涉及的过程以及其生物特性和催化活性背后的机制的理解取得了重大进展,但仍存在许多困难。纳米材料的进化有助于在纳米级改变材料的形状和结构,以实现所需的应用。为了区分半导体相和金属相,人们开发了准二维 (Q2D) 材料,例如石墨烯和 2D 蜂窝硅,以及层状过渡金属二硫属化物 (TMD),例如二硫化钼 (MoS 2 ) (WS2)。因为它在从块体转变为纳米级时能够表现出广泛的特性。其中,二硫化钼 (MoS 2 ) 是一种有趣的多功能材料。由于其 (1.9 eV) 直线带隙值,单片 MoS 2 无疑能够实现后硅电子学。在室温下,它具有高开/关电流比和大约 200 cm 2 (Vs -1 ) 的迁移率。MoS 2 的结构也是其两个特性的决定因素。它对气体传感很有用,因为它具有六边形结构,其中 S-Mo-S 原子层共价连接,相邻的 MoS 2 层之间有范德华连接。由于 MoS 2 具有良好的特性,因此具有多种实际应用。我们力求在这篇综述中涵盖当前的合成技术及其在 2D MoS 2 材料中的应用。关键词:过渡金属二硫化物 (TMD)、二硫化钼 (MoS 2 )、二硫化钼材料的合成技术以及二硫化钼的应用。
我们感谢 Ehsan Azarmsa、Aditya Chaudhry、Antonio Coppola、Zhiyu Fu、Dong Ryeol Lee、Hae-Kang Lee、Simon Oh 和 Lingxuan Wu 提供的出色研究协助。我们感谢 Francesca Bastianello、Jean-Philippe Bouchaud、Michael Brandt、John Campbell、Francesco Franzoni、Robin Greenwood、Valentin Haddad、Lars Hansen、Sam Hanson、John Heaton、Tim Johnson、Arvind Krishnamurthy、Spencer Kwon、John Leahy、Hanno Lustig、Alan Moreira、Knut Mork、Toby Moskowitz、Stefan Nagel、Jonathan Parker、Lasse sen、Joel Peress、Jean-Charles Rochet、Ivan Shaliastovich、Andrei Shleifer、Jeremy Stein、Johannes Stroebel、Larry Summers、Adi Sunderam、Jean Tirole、Harald Uhlig、Dimitri Vayanos、Motohiro Yogo 以及各个研讨会的参与者的评论。 Gabaix感谢斯隆基金会的资金支持。 Koijen 承认获得了芝加哥大学布斯商学院证券价格研究中心的资金支持。本文表达的观点为作者的观点,并不一定反映美国国家经济研究局的观点。