二氧化钛(TIO 2)最近引起了极大的关注,这主要是由于骨科和纳米材料科学的交集。这种感兴趣的激增可以归因于良好的理解,即Ti金属在暴露于大气条件时会经历表面氧化,最终导致外部面上强大的天然Tio 2层的形成。诸如阳极氧化等技术进一步增强了这一过程,从而导致了在生物学上兼容和成骨的钝化表面涂层的发展。纳米材料化学的进步在该结构域中至关重要,从而使TIO 2结构的受控组装(包括纳米纤维和纳米管)具有受控组装。此外,已经确定了特定的合成方法,可以产生具有分层结构的钛酸簇,这有利于磷灰石形成 - 天然骨组织的无机复合物。也值得注意的是,二氧化钛具有反应并转化为钛纳米管或纳米线的能力。这种特征已被证明是有益的,因为它已被证明可以促进与体液的离子交往相互作用,从而支持骨组织生长。具体来说,当将钛材料放入模拟的体液中时,离子交换开始并鼓励羟基磷灰石的产生,羟基磷灰石是天然骨的基本成分。纳米材料化学丰富了这一研究领域,许多实验室已经研究了结构控制TIO 2的形态,例如纳米纤维和纳米管[11,12]。这种产生的离子层结构作为阳离子储层起着至关重要的作用。已经确定了合成方法中的进步来产生钛酸盐材料,这些材料由它们的粘土状晶格(由边缘共享TIO TIO 6八面体组成)与阳离子实体散布在一起[13]。这种分层结构特别有利于模拟体液(SBF)中的磷灰石形成。更具体地说,涉及粉状TIO 2矿物质的热液反应,例如假酶和氧化钠或氢氧化钾溶液,会根据反应条件而产生Na-或K- titanate纳米管或纳米线。它有助于体液中发现的阳离子的离子交换,因此自主维持阳离子平衡原位,这对于骨组织生长至关重要。在SBF环境中,Na/k- titanate和钙(Ca 2+)之间的浓度梯度促使具有Ca 2+的单价Na +或K +离子的离子交换。这为随后的相互作用设定了阶段:磷酸盐阴离子的协调{即(PO 3)3-,(HPO 3)2-和(H 2 PO 3) - 从体液与泰坦酸盐结合的Ca 2+的体液中的(H 2 PO 3) - }。这种相互作用的顶点是形成水合磷酸钙或羟基磷灰石的形成,羟基磷灰石是天然骨的必不可少的基础[13]。
由于其储量丰富、生产成本低以及理论容量合理(372 mA hg 1),它被认为是最先进的 LIBs 负极材料。1,2然而,它存在严重的结构崩塌、循环过程中的剥落、与低工作电压相关的锂枝晶生长以及低温应用的限制。1,3 – 8由于 LIB 技术的快速发展,寻找新型负极材料迫在眉睫。在各种类型的负极材料中,氧化物基插层型负极因其高体积能量密度、增强的安全性和不错的功率密度而备受关注。 2,9 – 14 特别是钛基氧化物材料,例如 TiO 2 ,由于其成本低、毒性低、理论容量好、安全操作电位(1.7 V vs. Li/ Li + )、锂嵌入过程中体积变化小(< 4%)和往返效率高,对锂离子电池很有吸引力。2,12,15 – 18 氧化物电极材料的电化学性质在很大程度上受原子排列的影响。已研究了用于 LIBs 的各种同质异形体的 TiO 2,包括锐钛矿 ( I 4 1 / amd )、19 – 21 金红石 ( P 4 2 / mnm )、19,22,23 TiO 2 -B ( C 2 / m )、24,25 板钛矿 ( Pbca )、26 斜方锰矿 ( Pbmn ) 27 和钙钛矿 ( I 4 / m )。28 在所有同质异形体中,锐钛矿 TiO 2 的研究最为广泛。2,11,29 此外
印度钦奈速度工程学院机械工程系摘要:如今,从非常规能源来收集能量是一种新兴方法。中,太阳能是一个重要的来源,因为它的丰富性,可持续性,多功能性,成本效益和适应性的技术进步。太阳能光伏(PV)细胞具有将太阳辐射转换为电能的能力。但是,由于这种方法固有的光子反射,转化效率大约下降了约30%。光子反射主要基于太阳能电池表面的光学特性和物理特性。为了解决此问题,使用自旋涂层技术使用TIO 2和SIO 2纳米颗粒的组合使用单层和双层抗反射(AR)表面。混合TIO 2 -SIO 2纳米颗粒是通过使用Sol -Gel过程从其前体得出的。采用XRD(X射线衍射)方法来确认TIO 2 -SIO 2纳米材料的化学阶段。已经对涂层的厚度和粗糙度如何影响用抗反射涂层处理的表面的光学特征进行了分析。形态学信息和化学元素浓度是通过FESEM和EDAX分析获得的。已经测量了水接触角,以确保AR表面的疏水性质。由于具有增强的光学特性,AR涂层样品的功率转换效率从17.11%起到18.44%,这是未涂层样品的效率。随后,使用紫外线可见光谱仪用于通过分析其光谱响应(包括反射率,吸光度和带隙能量特性)来检查抗反射涂层的功效。关键字:反射(AR)涂层,XRD,EDAX,FESEM,太阳PV细胞,Tio 2 -Sio 2。
近年来,许多效果已致力于寻找作为光催化剂的新材料。对光触发的催化过程的极大兴趣源于利用地球上最清洁,最丰富的能源,即来自阳光的电磁辐射。它代表了应对日益增长的全球警告以及严格连接的空气污染和水污染的独特且不可错过的机会[1,2]。这项不含化石燃料的生态友好技术的开发导致高级氧化和还原过程能够补充废水[3,4],从而从水分拆料中产生H 2 [5-7],并分别将CO 2减少到燃料中[8,9]。在这些年中,关于太阳能转化的最佳态度的材料类是基于过渡金属氧化物的半导体[10-12]。通常,半导体材料的特征是带有带子带(VB)的电子,可以通过吸收通过事件光带来的适当能量带来的能量,从而在VB中留下照片诱导的孔[13]。因此,VB中的光促进氧化孔和CB中的还原电子产生了半导体表面的复杂氧化还原反应。由于TIO 2在3.2 eV附近保持带隙,因此需要进行掺杂过程,该事实属于电磁频谱的紫外线范围。从历史上看,第一代半导体光催化剂基本上是基于Tio 2材料的发展[14]。随后是第二代材料,其中Tio 2用金属和非金属元素掺杂[15,16]。实际上,影响地球表面的太阳辐射的UV成分仅为5%,不足以将TiO 2作为光催化剂激活。另一方面,可见的组件徘徊在43%附近;这样的数量促使科学家提高了
摘要:热光 (TO) 调制器在波长路由器、激光雷达、光学计算和其他可重构光子系统中发挥着越来越重要的作用。由于 TiO 2 纤芯和具有负热光系数的 SU-8 包层之间的协同效应,首次在 1310 nm 波段展示了基于溶胶-凝胶 TiO 2 平台的高效 TO 可调微环谐振器 (MRR)。以 SU-8 聚合物为顶部包层的 MRR 调制器表现出 33.0 pm/mW 的热调谐效率,比采用二氧化硅顶部包层的 MRR 调制器高 14 倍以上。它的上升/下降时间为 9.4 us/24 us,P π 功率为 7.22 mW,表明在允许在不同基板上进行单片集成的非晶材料平台中,TO 调制器具有相对较高的品质因数。这些结果为溶胶-凝胶 TiO 2 平台在光子集成电路中的应用带来了巨大的希望,并为设计可穿戴设备、可见光/红外通信和生物光子应用中的紧凑高效的 TO 调制器提供了新的视角。
用于估计神经网络中预测输入不确定性的 Unscented Transform 方法:应用于 TiO 2 纳米粒子的表征
摘要:采用计算和实验相结合的方法了解自限制 (SL) 和化学气相蚀刻 (CVE) 反应之间的竞争,以设计原子层蚀刻 (ALE) 工艺。ALE 工艺中的脉冲必须是自限制的;即,反应应在足够的脉冲时间后达到饱和。通过使用密度泛函理论 (DFT) 比较相应的 SL 和 CVE 反应的反应自由能,可以预测有利于 SL 或 CVE 反应的温度和压力条件。以 TiO 2 暴露于 HF 气体时的蚀刻为测试案例。模拟表明,当 TiO 2 暴露于压力为 0.2 Torr 的反应物 HF 时,在高达 87 °C (360 K) 的温度下,SL 反应优先去除 0.01 Torr 下的 H 2 O 并使表面氟化。在较高温度下,根据受动力学活化能垒影响的反应 TiO 2 + HF → TiF 4 + H 2 O,CVE 会持续去除 TiO 2。将原位傅里叶变换红外 (FTIR) 光谱和四极杆质谱 (QMS) 的实验结果与理论预测进行了比较。与理论高度一致,FTIR 光谱研究表明自发蚀刻 (CVE) 在温度约为 80 − 90 °C 时开始。此外,QMS 分析观察到 TiF 4 和 H 2 O 作为蚀刻产物,进一步验证了计算结果。计算还预测反应气体压力的增加会增强高温下的蚀刻。这种理论方法的计算成本低,可以快速筛选蚀刻试剂并预测反应在 SL 或 CVE 范围内的温度/压力窗口。
在这项工作中,在介孔TiO 2层(宿主)的敏化中研究了脱氧胆酸(DCA)作为coadsorbent的作用,其对称的羧基硫胺氰胺染料(来宾)。不同的方法,旨在减少H-聚集并最大程度地减少宿主活性位点的氰氨酸分子和DCA之间的竞争,从而改善太阳能电池的效率。含有羧基锚固组的亨氏丁胺的产量良好。氰烷在甲醇和二甲醇和二甲基甲酰胺溶液中的紫外线吸收归因于完全允许的电子跃迁(1ππ∗),以及NIR地区的荧光发射,在地面和激发状态下都有任何聚集的证据。TD-DFT计算,以研究这些化合物在其地面和激发电子状态中的几何和电荷分布。固态光体物理学表明,氰基在TIO 2上表现出极好的吸附,这可以通过结构中的-COOH部分的存在来证明。光物理测量结果表明,染料和DCA的最佳浓度,这导致了TiO 2表面上氰氨基H-聚集的有效抑制,此外还允许大染料负荷。通过循环伏安法鉴定染料的同性恋和Lumo能级,在染料敏化太阳能电池(DSSC)中,基于TIO 2介孔光阳极在染料敏化的太阳能电池(DSSC)中,在可接受的限制内显示氧化和还原电位。组装的DSSC已显示出电气参数和效率的大幅度改善。
M. Vanmathi A,,A。PriyaA,M。S. Tahir A,Sahir A,M。S. Razakh a,M。M. Senthil Kumar B,*,R。Indrajit C,R。Indrajit C,V。Elango D,G。Senguttuvan E,R v. Mangalaraja f。泰米尔纳德邦,印度-600 048 B机械工程学院,Vellore技术研究所,钦奈,泰米尔纳德邦,泰米尔纳德邦,印度-600 127 c物理系印度纳杜(NADU),600 089 E物理学系,安娜大学蒂鲁奇拉帕利大学工程学院毒性。进一步的金属掺杂可改变电导率,电气和光学特性。在这项研究中,使用喷雾热解技术进行了SN掺杂TIO 2的沉积。通过使用Hall效应技术获得了电性能,并通过X射线衍射和EDAX扫描电子显微镜分析膜的结构特性。X射线衍射的结果表明,通过喷雾热解沉积的薄膜是多晶的多晶,在(002)场的方向上优先取向。SEM分析表现出通过喷雾热解沉积的薄膜的膜结构。使用HALL效应技术获得了电导率的结果。(2024年6月7日收到; 2024年9月26日接受)关键词:二氧化钛(TIO 2),X射线衍射,扫描电子显微镜(SEM),Hall效果1。今天的引言,众所周知,大多数半导体使用二氧化钛纳米颗粒[1]。TiO 2在传感器[2],抗菌剂[3],氢[4],照片催化剂[5]和水蒸发[6]中找到了其应用。tio 2以其良好的光学特性,廉价,无毒和化学稳定而闻名。
如今,鉴于人类面临的主要问题,日益严重的环境污染和对可持续廉价能源的需求代表了重要的研究问题。因此,设计和开发能够集成到高效的环境处理和能源生产产品/技术中的先进材料是全世界不断研究的课题。在这种情况下,光催化材料被认为是主要用于水处理的有吸引力的候选材料,但也用于通过光电解水分解生产氢气。光催化技术利用光能作为驱动力,在光催化材料的存在下,通过矿化从(废)水中去除持久性有机污染物(例如染料、农药和药物)。具有光催化活性的材料种类繁多,例如半导体(金属氧化物、金属硫化物/硒化物等)、半导体基异质结(微/纳复合结构、二元或三元混合结构等)、钙钛矿、过渡金属尖晶石型混合氧化物、金属有机骨架(MOF)、水凝胶和废物衍生或模板材料。因此,本期主题主要指开发创新、先进和可操作的光催化技术,这些技术使用新的高效、环保、可持续和可重复使用的光催化材料。本期包括八篇文章,重点介绍先进的光催化材料在水处理和通过水分解反应制氢中的应用。以下是本期论文的简要摘要,考虑到光催化过程中使用的材料类型:金属氧化物(单组分、双组分或三组分混合结构)、钙钛矿和石墨相氮化碳(gC 3 N 4 )基半导体。总共八篇文章中,有三篇 [ 1 – 3 ] 重点介绍了 TiO 2 基光催化剂,因为 TiO 2 已被广泛研究,是一种具有相对较高的光催化活性和优异的化学稳定性的低成本环境友好型材料。在参考文献 [ 1 ] 中,使用刮刀技术在三种不同的基材上沉积 TiO 2 (Degussa P25) 薄膜:显微玻璃 (G)、掺杂氟的氧化锡 (FTO) 和铝 (Al)。在 UV-A、UV-B + C 和 VIS 辐照(七种场景)下,对两种污染物酒石黄 (Tr) 染料和啶虫脒 (Apd) 杀虫剂测试了样品的光催化性能,辐照时间为 8 小时。为了优化光催化效率,研究了几个参数(照射源、总辐照度值、光子通量、催化剂基材和污染物类型)的影响。结果表明,在导电(Al)基底上制备的样品,使用三个 UV-A 和一个 VIS 光源(13.5 W/m 2)的混合光源,可以获得更高的光催化效率(Tr 为 63.8%,Apd 为 82.3%)。在参考文献 [ 2 ] 中,作者报道了一种新型 Ba(II)/TiO 2 –MCM-41 复合材料,该复合材料使用掺杂 Ba 2+ 的 TiO 2 分散在 MCM-41 分子筛上。在紫外光照射(60 分钟)下,Ba(II)/TiO 2 –MCM-41 (91.7%) 在降解对硝基苯甲酸 (4 × 10 − 4 M) 时的光催化效率增强,这被认为是由于 Ba 2+ 离子和 MCM-41 的存在,这有助于降低带隙能量并促进 TiO 2 的轻松分散,从而形成一种表面积为