简介 Toll 样受体 (TLR) 可识别病原体相关分子模式 (PAMP),并通过诱导促炎蛋白的表达做出反应 (1)。PAMP 与 TLR 的结合导致受体近端信号复合物的形成,该复合物由 TIR 结构域衔接蛋白、IL-1 受体相关激酶 (IRAK) 和 E3 泛素连接酶 TNF 受体相关因子 6 (TRAF6) (2) 组成。TRAF6 的激活会导致其自身泛素化并形成未锚定的多泛素链,从而募集 TGF β 活化激酶 1 (Tak1) 并激活下游转录因子 NF- κ B 和 MAPK 通路,从而驱动炎症基因表达 (3)。 Toll 通路中进化保守的信号中间体 (Ecsit) 最初被描述为通过与 TRAF6 (4) 相互作用而对 NF- κ B 产生正向调节作用的物质,最近的报告也表明它与 Tak1 (5) 和 NF- κ B 蛋白 (6) 相互作用。Ecsit 的突变形式强烈激活 NF- κ B,已被证明可驱动炎症性疾病 (7)。其他研究已将 Ecsit 鉴定为线粒体电子传递链中复合物 I 的一部分 (8–11)。N 端线粒体定位序列将 Ecsit 引导至线粒体,以促进复合物 I 的组装。此外,在感染
引言癫痫会影响大约1%的人口,并可能导致多达5%的患者的生死质量大幅下降(1)。当前的治疗方案集中于对神经元超活性的症状控制。尽管开发了大量的毒药(ASM),但近三分之一的癫痫患者患有耐药性癫痫(2)。癫痫研究的优势集中在改变神经元活性上,但有几个例外集中在免疫调节上(3-5)。神经炎症在癫痫中的作用的临床证据包括在超级耐药性表演中使用皮质类固醇和几种常见ASM的抗炎作用(6-8)。的纵向鼠模型的纵向分析,例如毛果果诱导的癫痫持续状态(SE),同样暗示了癫痫中的免疫系统,通过证明激活的CD11b +和F4/80 +巨噬细胞的短暂增加,随后大脑中CD3 + T细胞增加了(9)。免疫反应性的遗传和药理学操纵还会影响临床前模型中的癫痫发作,阈值,频率和诱导(10-13)。更具体地说,癫痫发作活性后已注意到IL-1受体(IL-1R)上调,收费受体(TLR)的作用会导致突触传播和长期增强(LTP)的变化(11)。降低的Ca 2+电流复极化和γ-氨基丁酸(GABA)活性与IL -1B激活有关(14)。此外,星形胶质细胞已被证明会在IL-1R/TLR途径激活后增加兴奋性神经递质谷氨酸(15)。在代谢组学的新兴领域中,其中许多具有免疫调节特性,越来越多的证据表明免疫系统可能正在调节癫痫病。
SARS-COV-2导致COVID-19,这是一种传染病,症状从轻度感冒到严重的肺炎,炎症甚至死亡。尽管强烈的炎症反应是引起发病率和死亡率的主要因素,但在严重的covid-19期间,伴随性超级感染通常会引起肺炎,菌血症和败血症。异常的免疫反应可能是对细菌的敏感性增强,但在COVID-19期间,这些机制仍不清楚。在这里,我们调查了SARS-COV-2是否直接施加对细菌的免疫反应。我们研究了人树突状细胞(DC)在暴露于SARS-COV-2尖峰(S)蛋白和SARS-COV-2主要分离株(HCOV-19/意大利)后,对各种细菌触发器的功能。值得注意的是,DC在SARS-COV-2 S蛋白或SARS-COV-2分离株中的预曝光导致I型干扰素(IFN)(IFN)和细胞因子反应减少,响应对Toll-like受体(TLR)4激动剂脂多糖(LPS)(LPS),而其他TLR Agonist则不受欢迎。SARS-COV-2 S蛋白与C型凝集素受体DC-SIGN相互作用,尤其是,用抗体恢复了I型IFN和细胞因子对LPS的抗体的DC-SIGN。此外,通过小分子抑制剂阻止了激酶RAF-1,恢复了对LPS的免疫反应。这些结果表明,SARS-COV-2通过DC-SIGN诱导的RAF-1途径调节DC功能。这些数据表明SARS-COV-2通过DC-标志积极抑制直流功能,这可能解释了在Covid-19和细菌超细胞感染患者中观察到的较高死亡率。
Pregnancy, preeclampsia, gestation, hypertension, vasorelaxation, uterine artery, mesenteric artery, vascular smooth muscle, vascular function, vascular reactivity, endothelial dysfunction, nitric oxide, prostanoids, mitochondria, mitochondrial DNA, cell free DNA, innate immunity, inflammasome, toll-like receptors, adaptive immunity, type 2 diabetes, obesity, bacteria, infection, infectious disease, microbiome preeclampsia, pregnancy, TLR, vascular dysfunction, inflammation, inflammasome, endothelial dysfunction, hypertension, dementia, Alzheimer's, cerebral blood flow, intermittent hypoxia preeclampsia,血管生理,炎症,收费受体,先天免疫,子宫动脉,高血压,妊娠
背景:抗生素给药会导致肠道菌群和免疫系统改变影响健康。牛乳铁蛋白是一种牛奶蛋白,具有抗癌,抗炎,抗菌和免疫调节剂活性。的目的是研究天然和铁饱和乳铁蛋白逆转木林霉素对鼠模型中肠道霉素对肠道微生物群和肠收缩受体(TLRS)表达的影响的能力。方法:雄性C57BL/6小鼠用媒介物,克林霉素(Clin),本地牛乳酸铁蛋白(NLF),NLF + Clindamycin(NLF_Clin),铁饱和的牛乳脂素(SLF)和SLF + Clindamycin(SLF + clindamycin(Slf_clin(Slf_clin))。粪便样品,并提取细菌DNA。进行了16S rRNA V4高变量基因区域的测序以评估微生物组成。通过qPCR在小鼠结肠中测定TLR的mRNA表达水平(1-9)。 Pearson相关测试是在细菌之间进行的,显示样品之间的丰度差异,TLR2,TLR8和TLR9。 结果:β多样性分析表明,车辆的微生物群落与Clin,NLF_Clin和SLF_Clin的社区不同。 在家庭一级,临床组的细菌科,prevotellaceae和rikenellaceae降低,使用NLF或SLF的治疗恢复了这些影响。 临床降低了TLR2,TLR8和TLR9和SLF的表达,从而恢复了这些受体表达的降低。 最后,TLR8与Rikenellaceae的丰度正相关。通过qPCR在小鼠结肠中测定TLR的mRNA表达水平(1-9)。Pearson相关测试是在细菌之间进行的,显示样品之间的丰度差异,TLR2,TLR8和TLR9。结果:β多样性分析表明,车辆的微生物群落与Clin,NLF_Clin和SLF_Clin的社区不同。在家庭一级,临床组的细菌科,prevotellaceae和rikenellaceae降低,使用NLF或SLF的治疗恢复了这些影响。临床降低了TLR2,TLR8和TLR9和SLF的表达,从而恢复了这些受体表达的降低。最后,TLR8与Rikenellaceae的丰度正相关。结论:在克林霉素引起的肠道营养不良的情况下,乳铁蛋白恢复了某些抗炎细菌和TLR的正常水平,因此可能是添加到功能性食品中的好成分。
遗传变异与感染易感性之间的关联长期以来一直在自由宿主中进行研究,以推断出塑造免疫基因遗传多态性的当代进化力。尽管对蛋白质与病原体衍生的配体相互作用,例如MHC(主要的组织相互作用复合物)或TLR(TLR样受体),但对免疫系统的传递臂知之甚少。细胞因子是触发和调节免疫反应的信号分子,是先天性和适应性免疫之间的关键联系。In the present study we investigated how genetic variation in cytokines in bank voles Myodes glareolus affects their susceptibility to infection by parasites (nematodes: Aspiculuris tianjensis , Heligmosomum mixtum , Heligmo- somoides glareoli ) and microparasites ( Cryptosporidium sp , Babesia microti , Bartonella sp . )。我们专注于三种细胞因子:肿瘤坏死因子(TNF),淋巴毒素α(LTα)和干扰素β(IFNβ1)。总体而言,我们确定了与线虫易感性相关的四个单核苷酸聚合物(SNP):两个位于ltα中的两个单核苷酸(SNP),其中两个位于IFNβ1中。其中一个变体是代名词,另一个位于内含子中。与寄生虫负载相关的每个SNP都位于选择的密码子中或旁边,三个密码子显示了阳性选择的签名,以及一个净化选择之一。我们的结果表明,细胞因子容易受到寄生虫驱动的选择,而非编码变体虽然在宿主寄生虫共同进化的遗传背景中通常被忽略,但可能在野生系统中感染的易感性中起作用。
检测DNA是宿主防御的重要决定因素,也是自动弹性和自身免疫性疾病的驱动因素。未能在dnaseii或iii(trex1)中降解自DNA,从而导致CGAS刺激途径的激活。表达可改善疾病表现。然而,全身性红斑狼疮(SLE)在相对于内体TLR中的CGAS插入途径的贡献是有争议的。实际上,在FAS具有足够的SLE-Prone小鼠中,Sting缺乏效率未能营救,并实际上加剧了疾病表现。现在,我们将这些观察结果扩展到了i.p.诱导的SLE的慢性模型。注射TMPD(Pristane)。 我们发现,与CGAS刺激含量相比,CGA和刺激性不仅无法从TMPD诱导的SLE中拯救小鼠,而且导致自身抗体产生和蛋白尿水平更高,而蛋白尿水平则更高。 此外,我们使用CRISPR/CAS9在纯MRL/FAS LPR背景上产生了CGAS KO FAS LPR小鼠,发现疾病略微加剧,并且没有减弱。 我们假设CGAS插入途径会限制TLR激活,从而限制了这两个模型中的自身免疫性表现。 与此前提一致,与CGA或STING单一敲门动物相比,缺乏CGA和UNC93B1或Sting或Sting的小鼠会产生最小的全身自身免疫性。 尽管如此,B6小鼠中TMPD驱动的狼疮被废除了DNase I的AAV递送,暗示了DNA触发器。 总体而言,这项研究表明,CGAS刺激途径并不能促进SLE鼠模型中的全身自身免疫性。注射TMPD(Pristane)。我们发现,与CGAS刺激含量相比,CGA和刺激性不仅无法从TMPD诱导的SLE中拯救小鼠,而且导致自身抗体产生和蛋白尿水平更高,而蛋白尿水平则更高。此外,我们使用CRISPR/CAS9在纯MRL/FAS LPR背景上产生了CGAS KO FAS LPR小鼠,发现疾病略微加剧,并且没有减弱。我们假设CGAS插入途径会限制TLR激活,从而限制了这两个模型中的自身免疫性表现。与此前提一致,与CGA或STING单一敲门动物相比,缺乏CGA和UNC93B1或Sting或Sting的小鼠会产生最小的全身自身免疫性。尽管如此,B6小鼠中TMPD驱动的狼疮被废除了DNase I的AAV递送,暗示了DNA触发器。总体而言,这项研究表明,CGAS刺激途径并不能促进SLE鼠模型中的全身自身免疫性。这些数据对开发用于全身自身免疫性的CGAS定向疗法具有重要意义。
方法:为了生产安全且具有抗原性的鼻用疫苗,使用 SolaVAX 技术灭活 H37Rv,该技术利用核黄素、UVA 和 UVA 光来修改病原体的核酸结构。这种化学反应对核酸修饰的特异性可防止病原体复制,但可保持抗原的完整性。SolaVAX-TB 与含有 TLR 3 和 9 激动剂 (MucV) 的脂质体免疫刺激剂一起施用,旨在激活粘膜免疫。3 周大时,C57BL/6 小鼠皮内接种 BCG Pasteur。45 天后,它们接受了第一剂 IN SolaVAX+MucV 加强剂,45 天后,又接受了另一剂。7 周后,用 Mtb Beijing HN878 雾化动物;感染后 30 天和 90 天评估细菌负担和病理。
坏死作用是由许多促炎性刺激引发的,这些促进性刺激需要激活受体相互作用的丝氨酸/苏氨酸 - 蛋白酶激酶(RIPK)1,RIPK3和混合谱系激酶结构域样型伪动物酶(MLKL)Necrosoms组合体复合物[1-3]。在该复合物的组成部分中,RIPK1被认为是对多种疾病的管理的重要焦油[1-3]。在坏死信号传导过程中,RIPK1通过刺激特殊细胞受体(例如Toll样受体(TLR)3/4),肿瘤坏死因子(TNF)受体(TNFR)1和FAS受体而激活RIPK1 [4]。在RIPK1的磷酸化之后,在RIPK1,RIPK3和MLKL(4)在高型型组盒(HMGB1)和Interleukin(IL)-1家族中,RIPK3恢复在Ripk1,Ripk3和MLKL之间形成了Necrosom复合物。
摘要 简介:目前,新型冠状病毒感染的肺炎病例数仅略有下降,已成为一项重大的公共卫生挑战。我们仍在鼓励开发针对该病毒的有效疫苗,例如从 SARS-CoV-2 的成分(包括其刺突、核衣壳和 ORF1a 蛋白)设计的多表位疫苗。由于添加包括 HABA 蛋白和 L7/L12 核糖体在内的佐剂被认为有助于提高所设计疫苗的有效性,我们建议通过两种不同的佐剂设计多表位疫苗。方法:我们使用 IEDB 服务器预测使用 VaxiJen、AllPred 和 IL-10 Prediction 等在线工具表征的 BCL 和 TCL 表位。将选定的表位进一步构建成多表位疫苗。我们还在疫苗成分中添加了两种不同的佐剂,以提高疫苗的有效性。使用 trRosetta 构建了 3D 结构的疫苗。进一步用ClusPro和PatchDock将它们与不同的Toll样受体(TLR 3、4和8)以及SARS-CoV-2的进入受体ACE2对接,并用FireDock进行精炼。所有结构均通过USCF Chimera和PyMOL可视化。结果:本研究通过添加HABA蛋白和L7/L12核糖体作为佐剂成功设计了两种不同的候选疫苗。两种疫苗的理化性质和特性几乎同样好。同样,它们与TLR3、4、8和ACE2的强相互作用表明两者的最低能级估计都在-1,000以上。疫苗与ACE2和TLR的相互作用对于激活免疫反应和产生抗体至关重要。结论:设计和构建的两种多表位疫苗具有良好的特性,可能具有激活针对SARS-CoV-2的体液和细胞免疫反应的潜力。值得考虑进一步研究以证实本研究的结果。