免疫原性细胞死亡(ICD)是由具有免疫活性适当联系的药物触发的胞解的特定方式。在简短的诱导ICD诱导疗法中,触发肿瘤细胞中的前体应力,从而促进了特定危险相关的分子模式(DAMP)的发射。部分性内质网(ER)应激,其特征是真核开始因子2亚基1(EIF2α)的磷酸化,诱导内胞质网状(ER)的易位(ER)伴侣(ER)伴侣的伴侣(CalRreticulin(calR),包括钙蛋白(CALR),以便于等离子体膜,从而表现为ligands os91 aS91 for cds 91一个“吃我”信号,可刺激直流介导的吞噬作用。此外,ICD下癌细胞中自噬的发作促进了ATP的溶酶体释放,而ATP的溶酶体解放反过来又可以将嘌呤能受体P2X 7(P2RX7)结合起来,从而将其作为化学提取剂将DC引导到肿瘤床上。通过癌细胞释放膜联蛋白A1的最终归巢,该癌细胞与位于DC表面上的甲基肽受体1(FPR1)相互作用,从而促进了它们与肿瘤碎屑的相互作用。还分泌I型干扰素(IFN),该干扰素(IFN)发挥了自分泌作用,促进了CXCL10的合成以及旁分泌效应,从而增强了DC的CHE Motaxis。此外,肿瘤细胞屈服于ICD释放高动力组框1(HMGB1),该组作用于Toll样受体4(TLR4)和触发DCS成熟。成熟的DC具有加工和暴露于T淋巴细胞的能力。1最终,活化的细胞毒性T淋巴细胞(CTL)会诱导IFN-γ介导的残留恶性细胞杀死,并建立免疫记忆,以防止癌症复发。
肥胖与组织代谢与调节葡萄糖稳态相关的低度炎症的激活。肠道微生物群已与肥胖期间在肥胖期间观察到的炎症反应有着广泛的联系,该反应强调了肥胖期间宿主免疫和代谢之间的互连。肠道菌群以及肠道屏障功能的改变,为在先天免疫细胞和非免疫细胞中表达的模式识别受体(PRR)提供了无数的循环配体。PRR依赖性信号传导驱动了广泛基因的表达,这取决于靶向细胞的特定功能和生理环境。PRRS激活可能会对宿主代谢炎症产生相反的影响。核苷酸结合寡聚结构域1(NOD1)或含有3(NLRP3)活化的NOD样受体吡啶结构域可促进代谢炎症和胰岛素耐药性,而NOD2激活可改善肥胖症期间胰岛素敏感性和胰岛素敏感性。Toll样受体(TLRS)2、4和5还对代谢组织显示了特定的影响。TLR5有效的小鼠易于肥胖,并且响应高脂饮食而受到炎症,而将TLR5配体(伏氨酸脂蛋白)注射对饮食诱导的肥胖具有保护作用。对相反的TLR2和4个激活在肥胖期间与有害代谢结果有关。TLR4激活通过源自肠道微生物群的分子激活来增强代谢炎症和胰岛素耐药性和TLR2的激活,促进了肥胖的发作。现在很明显,细菌衍生分子对PRR的激活在宿主代谢调节中起关键作用。prr在各种细胞类型中表达,使对肥胖症中PRRS激活/沉默和代谢炎症之间关系的机制的理解变得复杂。本评论概述了当前对肠道微生物群和PRR之间相互关系的理解,重点是其对肥胖和相关代谢疾病的后果。
摘要 结直肠癌 (CRC) 是第三大常见癌症和第二大致命癌症。近年来,人们越来越关注肠道菌群在 CRC 发生和发展中的作用。根据 CRC 患者的测序研究以及细胞培养和动物模型中的功能研究,一些细菌物种,如具核梭杆菌、大肠杆菌、脆弱拟杆菌、粪肠球菌和沙门氏菌与 CRC 有关。这些细菌可通过基因毒性物质导致宿主 DNA 损伤,包括 pks + 大肠杆菌分泌的大肠杆菌素、脆弱拟杆菌产生的脆弱拟杆菌毒素 (BFT) 和沙门氏菌的伤寒毒素 (TT)。这些细菌还可以通过影响宿主信号通路(如 E-cadherin/β-catenin、TLR4/MYD88/NF- κ B 和 SMO/RAS/p38 MAPK)间接促进 CRC。此外,其中一些细菌还可以通过抑制免疫细胞功能、创造促炎环境或影响自噬过程帮助肿瘤细胞逃避免疫反应,从而促进 CRC 进展。研究发现,使用经典抗菌药物甲硝唑或红霉素、抗菌活性成分 M13@ Ag(由无机银纳米粒子和 M13 噬菌体的蛋白质衣壳静电组装而成)、小檗碱和泽兰酮治疗可不同程度地抑制致瘤细菌。在这篇综述中,我们介绍了阐明几种 CRC 相关细菌的致瘤机制的进展,以及开发有效抗菌疗法的进展。特定细菌已被证明在 CRC 的致癌和进展中具有活性,一些抗菌化合物已显示出对细菌诱发的 CRC 的治疗潜力。这些细菌可能可用作 CRC 的生物标志物或治疗靶点。关键词 结直肠癌;微生物群;致瘤机制;基因毒性;癌症途径;肿瘤免疫
本研究介绍了 VaxiPatch,这是一种新型疫苗接种系统,由亚基糖蛋白疫苗抗原、佐剂和皮肤给药组成。在这项研究中,流感病毒 B/Colorado/06/2017 的 rHA 被整合到合成病毒体中,佐剂脂质体由来自 Saponaria quillaja 的 QS-21 形成,含或不含合成的 TLR4 激动剂 3D - (6-酰基) PHAD。这些成分被浓缩并与染料共同配制成海藻糖。皮肤给药是使用经济的 37 点不锈钢微针阵列实现的,该阵列设计用于通过用于大规模生产免疫诊断的微流体分配器自动填充/完成。疫苗和佐剂沉积在每个尖端侧面的口袋中形成糖玻璃,允许通过刚性钢结构直接进行皮肤穿透。在本研究中,Sprague Dawley 大鼠(每组 n = 6)接种了含有 0.3 mg rHA、0.5 mg QS-21 和 0.2 mg 3D - (6-酰基) PHAD 和染料的 VaxiPatches,其抗原特异性 IgG 滴度比肌肉注射的 4.5 mg FluBlok(p = 0.001)高 100 倍。同样,这些动物的血凝抑制滴度比 FluBlok 对照高 14 倍(p = 0.01)。还将无佐剂 VaxiPatches 与肌肉注射的 rHA 病毒体进行了比较。加速保质期研究进一步表明,配制的病毒体抗原在 60°C 下至少可保持两个月的活性。此外,染料的共同配制可以根据皮肤上的临时图案提供可见的递送验证。 VaxiPatch 等室温稳定的疫苗接种套件有可能提高全球疫苗的使用率和依从性。2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
中性粒细胞和巨噬细胞是已知的主要细胞类型(ET),由DNA和组蛋白组成(主要是其瓜氨酸形式),并由不同的蛋白质(1)进一步装饰。当中性粒细胞经历一种称为Netosis的特殊细胞死亡时,它们会施放中性粒细胞外陷阱(NETS),其中包括蛋白质,例如中性粒细胞弹性酶(NE)和脊髓过氧化物酶(MPO)(2)。类似地,巨噬细胞因梅特病而死亡,铸造巨噬细胞外陷阱(MetS),与网络相比,仅表现出较小的差异,例如较短的染色质片段和更快的形成(3,4)。其他细胞类型(例如嗜酸性粒细胞和淋巴细胞)也可以铸造ET,尽管它们的意义不足。网和大都会是在感染的背景下首先发现的,因为它们能够捕获细菌并限制其传播(1),但它们也参与了许多炎症和自身免疫性疾病以及癌症(5)。两篇评论论文研究了肿瘤细胞与网络之间的串扰。Zhao和Jin回顾了网络在不同肿瘤模型和人类患者中促进肿瘤进展中的作用。网络相关的HMGB1或NE可以分别与TLR9或TLR4结合。这会触发肿瘤细胞增强其增殖,增加线粒体生物发生,并促进细胞因子(例如IL-6和IL-8)的释放,而IL-6和IL-8则依次将中性粒细胞产生更多的网。慢性炎症会增加网络的形成,由于蛋白酶的存在,例如MMP-9或蛋白酶3(PR3),它会重塑细胞外基质(ECM)。网也影响对治疗的抵抗力。降解的ECM蛋白(特定于层粘连蛋白)促进了肿瘤细胞的出口。化学疗法或放疗后,死亡的肿瘤细胞释放了增加净形成的潮湿。染色质的网格可保护肿瘤细胞免受NK细胞或CD8+ T细胞细胞毒性的影响,这可能是通过网络相关的PD-L1。
摘要Monkeypox病毒(MPXV)是一种引起人畜共患病的DNA病毒,对全球主要的公共卫生挑战提出了重大的挑战,死亡率在3%–6%之间。尽管天花疫苗提供了部分交叉保护,但对于专用,有效的蒙基毒(MPOX)疫苗的迫切需要。这项研究旨在设计一种基于多活蛋白肽的疫苗,该疫苗专门适用于在MPXV病例上升的东南亚人群中常见的HLA等位基因概况。使用免疫信息学,我们从MPXV细胞表面抗原和IFN-Alpha/beta受体蛋白中筛选并检测到B和T细胞表位。通过严格评估其抗原性,免疫原性,过敏性和毒性,以确保安全性和有效性来验证疫苗的设计。关键表位映射到HLA等位基因,包括HLA-A*11:01,HLA-A*24:02和HLA-B*15:02,在东南亚人群中非常普遍。分子对接分析表明,疫苗构建体与TLR3/TLR4免疫受体之间的相互作用稳定,这表明具有强大的免疫反应激活。此外,分子动力学模拟证实了疫苗受体复合物的结构稳定性。这种免疫信息驱动的多势疫苗设计为对抗MPXV提供了有前途的候选人,对东南亚人群具有很高的投影覆盖范围和免疫原性。建议在实验室和临床环境中进行验证以确认这些发现。自2022年5月以来,世界卫生组织(WHO)在全球范围内收到了越来越多的MPOX病例报告[3,4]。Keywords: bioinformatics, medicine, monkeypox, multi-epitope vaccine, vaccine Introduction Monkeypox (mpox) is a zoonotic disease caused by the monkeypox virus (MPXV; Poxviridae family) and causes symptoms similar to those of smallpox [1] The first case of mpox in humans was recorded in 1970 in the Democratic Republic of the Congo [2, 3].全世界有88,060例MPOX病例和147个与MPOX相关的死亡[5]。根据世卫组织,MPOX的死亡率约为3%–6%[6,7]。MPOX体征和症状包括淋巴结肿大,流感,皮疹,发烧和头痛[8]。肺炎,脑炎,视力威胁性角膜炎以及随后的
肾上腺素能受体(β2-ARS)(Prass等,2006)。β2-ARS在所有显着的免疫细胞亚型上密集表达,然后通过降低弹性媒介物的合成和释放来传达信号传导途径,并管理外围免疫系统是抑制性的,以抑制(Bosmann等,2012;Martín-Cordern-cordero and and parecrign and。 Hervé等人,2017年;Aaç等人,2018年),来自活化的巨噬细胞和淋巴细胞。这种抗炎性反应被认为是防止缺血后大脑严重和有害的炎症反应的补偿机制(Chamorro等,2007; Iadecola and Anrather,2011)。然而,抗炎性反应会增加对中风后全身感染的敏感性,尤其是肺炎。可以释放针对中枢神经系统抗原的旁观者自身免疫因子,这是由于肺炎引起的炎症而释放的,这可能会使中风患者的预后恶化。因此,预防中风相关的肺炎至关重要(Winklewski等,2014)。右美托咪定(DEX)是α2肾上腺素能受体(α2-ARS)的有效且高度选择性的激动剂。通过激活突触前α2-ARS,DEX通过防止NE释放核核核释放来降低交感神经活性(Jorm和Stamford,1993)。由于其防止NE释放的能力,DEX具有免疫保护品质(Wang等,2019)。dex通过预防小胶质细胞激活,降低神经蛋白的弱化反应并最大程度地减少神经元坏死和凋亡来保护大脑(Kim等,2017; Gao等人,2019年)。关于肺部炎症,研究人员发现,DEX通过多种抗炎性通道在肺组织中降低了炎症反应,包括胆碱能抗炎性系统和TLR4/NF-κB路径(Wu等,2013; Liu et al an flr4/nf-κB路径。进行本研究是为了确定dex对中风小鼠中脑和周围免疫状态的影响,并探索DEX是否会改善SAP的症状以及有益的神经元结局。
患者抗肿瘤免疫反应显着影响临床结果[1]。因此,详细的肿瘤微环境表征将转化为有针对性的治疗方法,并在临床治疗后的临床结局和生活质量方面得到显着改善[1]。从经典上讲,对癌症的免疫反应是在继发性淋巴机械器(SLOS)中产生的[2,3]。在SLO的CD8 + T细胞反应开始期间,包括区域淋巴结(RLN),幼稚的T细胞被树突状细胞(DC)启动,然后再通过血液迁移到肿瘤[4,5]。然而,在转移性淋巴结中,细胞壁ches变得更加免疫抑制,包括抑制性蛋白质对DCS和调节性T细胞(Tregs)的表达升高,以及头部和颈部癌症中的更幼稚和静态的CD4 + T细胞[5]。因此,没有转移的RLN对于产生与抗肿瘤免疫反应相关的CD8 + T细胞反应很重要。palatine扁桃体(位于口咽中的SLO)对于宿主防御上呼吸道病原体非常重要[6]。我们先前的研究表明,口咽癌(OPC)周围扁桃体组织(PTTS),围绕原发性肿瘤的无肿瘤扁桃体组织,淋巴结转移性和转移症阳性的OPC的许多免疫相关基因的差异表达。因此,OPC的PTT的免疫学过程通过为有效的免疫细胞提供原发性肿瘤部位而对有效的免疫反应至关重要。然而,尚未阐明PTT和RLN或非肿瘤炎症性扁桃体之间的免疫学差异。此外,线粒体相关的免疫代谢路径对于免疫学调节淋巴病蔓延至关重要,对于淋巴病疾病扩散,Toll样受体4(TLR4)级联反应最为重要[8]。因此,我们以前的发现高光PTT是研究与OPC淋巴传播相关的免疫机制的重要目标。此外,与无转移RLN相比,研究PTTs的临床意义对于阐明与OPC淋巴传播相关的免疫机械性的临床意义仍然需要评估。在这项研究中,分析了没有OPC交叉的炎症性扁桃体和RLN的转录曲线,并与PTT相比,数据与PTT相比,以进一步阐明PTT免疫学特征。ptts和RLN,以评估它们在预测OPC淋巴传播方面的潜力。通过检查这些方面,本研究试图向OPC淋巴传播的免疫机制提供新的见解。
背景:糖尿病性视网膜病(DR)是威胁性糖尿病的微血管并发症。慢性炎症和内皮功能障碍是疾病发病机理中的关键因素。因此,为减少视网膜炎症而开发的干预措施预计将对DR的预防和治疗有益。在本研究中,我们开发了一类具有有效抗炎活性的无药肽的纳米杂化剂,并研究了其在氧气诱导的视网膜病变(OIR)小鼠模型和链蛋白酶(STZ)诱导的糖尿病小鼠模型中治疗DR的治疗功效。方法:六肽被用于修饰金纳米颗粒以形成基于药物的基于药物的纳米杂交(P12)。然后,我们检查了p12在HUVEC和BV2细胞中的理化特性和抗炎活性,并确定了这种新型生物活性的关键氨基酸。应用玻璃体内和恢复轨道注射以确定P12的最佳视网膜输送途径。使用OIR模型和STZ诱导的糖尿病模型研究了p12治疗DR的治疗功效。通过免疫组织化学和流式细胞仪分析,我们确定了在视网膜中内化p12的主要细胞。 此外,还使用体外实验来探索p12抗炎活性的基本分子机制。 结果:我们发现P12在HUVEC和BV2细胞中均表现出有效的抗炎作用。 此外,可以通过玻璃体内注射有效地将p12有效地输送到视网膜。通过免疫组织化学和流式细胞仪分析,我们确定了在视网膜中内化p12的主要细胞。此外,还使用体外实验来探索p12抗炎活性的基本分子机制。结果:我们发现P12在HUVEC和BV2细胞中均表现出有效的抗炎作用。此外,可以通过玻璃体内注射有效地将p12有效地输送到视网膜。玻璃体内注射的p12显着改善了早期DR症状,包括STZ诱导的糖尿病小鼠的血管泄漏和周细胞损失。它还抑制了OIR小鼠的病理新生血管形成和视网膜出血。重要的是,我们发现玻璃体内注射的p12主要由小胶质细胞和内皮细胞吸收,从而导致视网膜内皮炎症和DR动物模型中的小胶质细胞激活减少。机理研究表明,p12在内皮细胞和小胶质细胞中都有效抑制了几种TLR4下游信号通路,例如NF-κB,JNK和P38 MAPK。这种效应是由于p12在阻止内体TLR信号转导的内体酸化过程中的能力。结论:我们的发现表明,局部注射经过适当设计的,无药,基于肽的纳米杂交可以作为治疗DR的安全有效的抗炎纳米医学。
1. Kuehnast, T.、Kumpitsch, C.、Mohammadzadeh, R.、Weichhart, T.、Moissl-Eichinger, C. 和 Heine, H. 2024.《探索人类古生物组:其与健康和疾病的相关性及其与人类免疫系统的复杂相互作用》,FEBS 杂志。 10.1111/febs.17123 2. Zamyatina, A., Strobl, S., Zucchetta, D., Vasicek, T., Alessandro, M., Ruda, A., Widmalm, G. 和 Heine, H. 2024.《非还原糖支架能够开发具有皮摩尔效力的免疫调节 TLR4 特异性 LPS 模拟物》,Angew Chem Int Ed Engl:e202408421。 10.1002/anie.202408421 3. Heine, H.、Adanitsch, F.、Peternelj, TT、Haegman, M.、Kasper, C.、Ittig, S.、Beyaert, R.、Jerala, R. 和 Zamyatina, A. 2021.《使用二糖脂质 A 模拟物定制调节细胞促炎反应》,Front Immunol,12:631797。10.3389/fimmu.2021.631797 4. Vierbuchen, T.、Stein, K. 和 Heine, H. 2019.《RNA 正在造成损害:RNA 特异性 Toll 样受体对健康和疾病的影响》,Allergy,74:223-35。 10.1111/all.13680 5. Stein, K., Brand, S., Jenckel, A., Sigmund, A., Chen, ZJ, Kirschning, CJ, Kauth, M. 和 Heine, H. 2017.“树突状细胞对乳酸乳球菌 G121 及其 RNA 的内体识别是其抗过敏作用的关键”,《过敏与临床免疫学杂志》,139:667-78 e5。 10.1016/j.jaci.2016.06.018 6. Vierbuchen, T.、Bang, C.、Rosigkeit, H.、Schmitz, RA 和 Heine, H. 2017. “与人类相关的古细菌 Methanosphaera stadtmanae 通过其 RNA 被识别并诱导 TLR8 依赖的 NLRP3 炎症小体激活”,Front Immunol,8:1535。10.3389/fimmu.2017.01535 7. Bang, C.、Weidenbach, K.、Gutsmann, T.、Heine, H. 和 Schmitz, RA 2014. “肠道古细菌 Methanosphaera stadtmanae 和 Methanobrevibacter smithii 激活人类树突状细胞”, PloS one, 9: e99411。10.1371/journal.pone.0099411 8. Debarry, J.、Hanuszkiewicz, A.、Stein, K.、Holst, O. 和 Heine, H. 2010.《鲁氏不动杆菌 F78 的过敏保护特性是由其脂多糖赋予的》,过敏,65:690-7。 10.1111/j.1398-9995.2009.02253.x 9. Debarry, J.、Garn, H.、Hanuszkiewicz, A.、Dickgreber, N.、Blumer, N.、von Mutius, E.、Bufe, A.、Gatermann, S.、Renz, H.、Holst, O. 和 Heine, H. 2007.“从农场牛棚中分离出的鲁氏不动杆菌和乳酸乳球菌菌株具有很强的过敏保护特性”,过敏与临床免疫学杂志,119:1514-21。 10.1016/j.jaci.2007.03.023 10. Heine, H.、Kirschning, CJ、Lien, E.、Monks, BG、Rothe, M. 和 Golenbock, DT 1999.《切割
