2D 过渡金属二硫属化物 (TMDC) 是原子级厚度的半导体,在晶体管和传感器等下一代光电应用方面具有巨大潜力。它们的大表面体积比使其节能,但也对物理化学环境极为敏感。在预测电子行为(例如其能级排列)时必须仔细考虑后者,这最终会影响器件中的电荷载流子注入和传输。这里展示了局部掺杂,从而通过化学工程改造支撑基板的表面来调整单层 TMDC(WSe 2 和 MoS 2)的光电特性。这是通过使用两种不同的自组装单层 (SAM) 图案的微接触印刷来装饰基板来实现的。SAM 具有不同的分子偶极子和介电常数,显著影响 TMDC 的电子和光学特性。通过分析(在各种基底上),可以确认这些影响完全来自 SAM 和 TMDC 之间的相互作用。了解 TMDC 所经历的各种介电环境可以建立电子和光学行为之间的关联。这些变化主要涉及电子带隙宽度的改变,可以使用肖特基-莫特规则计算,并结合 TMDC 周围介质的屏蔽。这些知识可以准确预测单层 TMDC 的(光)电子行为,从而实现先进的设备设计。
二维(2D)过渡金属二核苷(TMDC)表现出令人兴奋的半导体特性和用于晶体管,光电设备,量子信息科学和能量任务的多功能材料化学。金属有机化学蒸气沉积(MOCVD)已成为一种有前途的技术,它可以增长2D TMDC,这要归功于其在此过程中执行高温外观生长并保持稳定的前体流量的能力。首先,我将讨论我们在蓝宝石和石墨烯基板上生长2D TMDC的MOCVD过程,以及其在功能化表面或Damascene结构上低温沉积的能力。[1,2]第二,我将讨论我们在TMDC增长期间使用RE [3]和V的TMDC替代掺杂的最新进展。一些掺杂剂可以调节载体浓度,引入磁性,甚至治愈TMDC中的缺陷。第三层TMDC半导体可能会引起近室温度设备应用,因为它们的热电离能量减少了,与单层相比。i将介绍我们的外延1到3层MOS 2,由MOCVD生长的逐层和结果。,最后,使用TMD作为构建块,我们可以用固有的偶极矩创建破坏对称性的2D材料。最新结果[4,5],包括将2D WS 2和MOS 2转化为2d Janus WSSE和MOSSE以及由Janus TMD和标准TMDS组成的杂波的电荷转移研究。
valleytronic,光学,热,磁性和铁电性能在新型异质结构和设备中。它们的弱层间耦合可以通过机械堆叠2D材料来相对简单地制造垂直侵蚀。另一方面,侧面异质结构(LHSS)的层次是现代金属 - 氧化物 - 氧化物 - 氧化导向器磁场晶体效应的基于微电极的基本结构,由于需要更多的复杂生长和兴奋剂技术,因此受到了探索的较少。受到可能从2D LHSS出现的潜在杰出性能和多功能调整自由的鼓励,在该领域进行了多项实验和理论研究。[1] The earliest experimentally realized 2D LHSs were those between graphene and hexagonal boron nitride (hBN) [2–6] grown by chemical vapor depo- sition (CVD), from which prototype field effect transistors (FETs) were demonstrated [2–5] Shortly later, a series of transition metal dichalcogenide (TMDC) mono layer (ML)通过一步或两步的CVD方法制备LHSS,包括MOS 2,MOSE 2,WS 2和WSE 2的组合。[7-12]所有这些TMDC LHSS都显示二极管样电流的整流效应。[26]同时,制造了具有高性能的原型设备,包括光电二极管和互补的金属 - 氧化物 - 半导体晶体管逆变器,[7,10–12]通过控制良好的气体流量切换技术或光刻辅助辅助阴离子的替代品,TMDC LHS的脱位量很清晰。 LHSS仅由一种材料组成,但具有不同的厚度,[16,17]或介电环境[18]在其界面上,产生了电子带隙,整流和光伏效应的修饰。将材料与不同空间对称性组合的2D LHS的其他形式,例如石墨烯-TMDC LHSS [19-22] HBN-TMDC LHSS,[19]石墨烯纳米替伯型LHSS与不同的兴奋剂[23]或宽度[23]或宽度[24] [24]单钙化剂 - 二甲基二苯二苯lhss [26]是通过各种增强的CVD方法创建的,例如机械 - 脱落的辅助CVD,[19]种子促进的CVD,[20]由等离子体蚀刻定义的模板生长,由等离子体蚀刻[21] [21] [21]和热层转化化学构图。
二维(2D)材料具有非凡的特性,使它们在下一代电子,光学,能量和传感器相关的应用中具有吸引力的纳米材料。要实现2D材料(例如过渡金属二核苷)(TMDC)的技术潜力,需要高度可控和可扩展的途径。尽管已经为TMDC开发了多种合成材料,但生产大规模的高质量晶体层仍然具有挑战性。与自上而下的方法相比,合成2D材料的自下而上的方法具有更大的应用范围。化学蒸气沉积(CVD)和原子层沉积(ALD)途径表现出巨大的希望,因为它们能够构成大面积,产生出色的均匀性,无与伦比的保融性和原子尺度的可控性,除了行业兼容。对于TMDC的CVD和ALD,前体对形成的层的性质起着关键作用。在本演讲中,将突出显示代表性TMDC(MOS 2和WS 2)的金属有机前体,沉积条件和物质特性之间的相互作用。将讨论与经典CVD过程相关的高温的措施。对不同底物上层成核和生长的研究揭示了不同的生长模式和成核密度。新的前体组合为TMDC在中等至低温下的大面积结晶生长的直接生长铺平了道路,这对于广泛的应用是一个重要的优势。
一种非常有前途的原子薄半体导管的材料类是过渡金属二分法元素(TMDC)。该材料类在MX 2(M¼TransitionsMetal;x¼s,se,te)层中具有较强的共价键结晶,但相对较弱,但相对较弱,可以切断大量晶体的单层。由单层制造的设备可以描述为仅接口的设备,并且已经显示了TMDC作为气体传感器的应用。[14]为了能够在高性能的FET应用中使用TMDC,过度出现的主要挑战是这些单层的缺陷控制。[15]两种主要类型的缺陷是晶界,金属或金属葡萄染色体空位。既会降低材料的电性能,但是空缺也为使单层官能化的额外途径开辟了一条额外的途径,可以在传感器应用中进行优势。[16 - 20]最近,已经显示了使用去离子化(DI)水的基于MOS 2的FET装置的运行;但是,使用MOS 2多层。[21,22]这些结果构成了在
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
纳米技术的进展目前受GHz范围内的电子开关速度严重限制。提出了各种想法,即使用可以实现Petahertz转换的单周光学脉冲。Rybka等。 证明了等离子纳米电路中电子电流的连贯的光波控制[1]。 这是Keathley等人扩展的。 从金纳米antennas [2]到光发射。 Hommelhoff和Ref中的同事报告了光场驱动的真实和纯载体。 [3],他还证明了电子相关效应在超快光发射中的重要作用[4]。 subfemtsecond灯驱动的电荷动力学在参考文献中进行了。 [5]和[6]。 进步的第二个方向是利用降低尺寸的新型量子材料的潜力,例如石墨烯的单层或过渡金属二核苷(TMDC)。 他们提供了非常广泛的电子和光学特性,包括强烈的激子效应[7-11]。 当系统尺寸进一步降低到只有几纳米时,自由的额外自由会出现,而单层簇的形状也有所不同。 特别有承诺的候选者是石墨烯或TMDC的纳米群体,石墨烯纳米纤维(GNR)[12-15]和纳米仪[16]。Rybka等。证明了等离子纳米电路中电子电流的连贯的光波控制[1]。这是Keathley等人扩展的。从金纳米antennas [2]到光发射。 Hommelhoff和Ref中的同事报告了光场驱动的真实和纯载体。 [3],他还证明了电子相关效应在超快光发射中的重要作用[4]。 subfemtsecond灯驱动的电荷动力学在参考文献中进行了。 [5]和[6]。 进步的第二个方向是利用降低尺寸的新型量子材料的潜力,例如石墨烯的单层或过渡金属二核苷(TMDC)。 他们提供了非常广泛的电子和光学特性,包括强烈的激子效应[7-11]。 当系统尺寸进一步降低到只有几纳米时,自由的额外自由会出现,而单层簇的形状也有所不同。 特别有承诺的候选者是石墨烯或TMDC的纳米群体,石墨烯纳米纤维(GNR)[12-15]和纳米仪[16]。从金纳米antennas [2]到光发射。光场驱动的真实和纯载体。[3],他还证明了电子相关效应在超快光发射中的重要作用[4]。subfemtsecond灯驱动的电荷动力学在参考文献中进行了。[5]和[6]。进步的第二个方向是利用降低尺寸的新型量子材料的潜力,例如石墨烯的单层或过渡金属二核苷(TMDC)。他们提供了非常广泛的电子和光学特性,包括强烈的激子效应[7-11]。当系统尺寸进一步降低到只有几纳米时,自由的额外自由会出现,而单层簇的形状也有所不同。特别有承诺的候选者是石墨烯或TMDC的纳米群体,石墨烯纳米纤维(GNR)[12-15]和纳米仪[16]。