目的:通知国防部运输/交通管理办公室 (TO/TMO),SDDC 将删除过去两年未更新且在全球货运管理 (GFM) 数据源中没有显示航运活动的 GBLOC 的 TFG 站点。相应的 GBLOC 将由 USTRANSCOM 运输参考数据模块 (TRDM) 停用。背景:SDDC G3 定期与 TO/TMO 协调,以审查和更新他们的 TFG 信息。我们的分析确定了 37 个地点,这些地点的联系点不再可用,并且 TFG 页面尚未维护。进一步的研究发现,根据 GFM 数据,这些站点没有航运活动。在 TFG 的管理角色中,SDDC G3 将协调删除 TFG 页面并停用本咨询中列出的 GBLOC。注意:TO/TMO 必须在 2024 年 11 月 30 日之前请求维护这些 TFG/GBLOC 中的任何一个,并确定 POC 以更新和维护其信息。过期的 TFG/GBLOC 如下所列。请联系 SDDC G3 国内货运管理部门保留 TFG/GBLOC。11 月 30 日之后,SDDC 将开始停用这些 TFG/GBLOC。POC:SDDC G3 国内货运管理部门,usarmy.scott.sddc.mbx.g3-
1.1 简要历史概述 ................................................................................................ 16 1.2 原理和电荷存储机制 ................................................................................ 18 1.2.1 电双层电容器 (EDLC) ................................................................ 20 1.2.2 赝电容器 ...................................................................................... 22 1.2.3 非对称超级电容器(电容式非对称超级电容器与混合超级电容器) ............................................................................. 24 1.3 超级电容器的电极材料 ............................................................................. 26 1.3.1 碳基材料 ............................................................................................. 27 1.3.2 过渡金属氧化物/氢氧化物 (TMOs/TMHOs) ............................................................. 32 1.4 电极材料的合成方法 ............................................................................................. 40 1.4.1 化学气相沉积 (CVD) ............................................................................. 40 1.4.2 电聚合/电沉积 ............................................................................. 41 1.4.3 水热/溶剂热法 ...................................................................................... 41 1.4.4 共沉淀法 .............................................................................................. 42 1.5 电极材料的电化学测量 .............................................................................. 42 1.5.1 超级电容器电极材料的指标 ...................................................................... 42 1.5.2 电极材料的电化学测量 ...................................................................... 43 1.6 论文目标和提纲 ............................................................................................. 50 1.7 参考文献 ............................................................................................................. 53 第 2 章 ............................................................................................................................. 80 用于混合超级电容器的层状双氢氧化物 (LDH) ............................................................. 80
摘要:过渡金属氧化物(TMOS)是可安全和快速充电的电池的有前途的阳极材料,但是它们的高工作电势限制了能量密度。在这里,我们制定了一种抑制无序岩盐(DRS)Li 3 V 2 O 5(LVO)阳极的工作潜力的策略,通过MG掺杂量约为10%至0.54 V。密度功能理论(DFT)计算将这种电压降低归因于li离子的位置能量增加,因为Mg掺杂,对LI迁移障碍的影响很小。mg-掺杂的LVO在1000个周期以上的95%以上,速率为5C。全细胞具有0.8 CO 0.8 CO 0.1 Mn 0.1 Mn 0.1 O 2阴极的预期,预期的能量密度和能量密度的增加,同时保留了5C的250个周期的能力的91%,以表明我们的发现在5C中显示出良好的良好的良好态度,该良好的良好的良好态度的良好的良好态度是良好的途径。增强的能量密度。l
摘要:过渡金属氧化物(TMOS)是可安全和快速充电的电池的有前途的阳极材料,但是它们的高工作电势限制了能量密度。在这里,我们制定了一种抑制无序岩盐(DRS)Li 3 V 2 O 5(LVO)阳极的工作潜力的策略,通过MG掺杂量约为10%至0.54 V。密度功能理论(DFT)计算将这种电压降低归因于li离子的位置能量增加,因为Mg掺杂,对LI迁移障碍的影响很小。mg-掺杂的LVO在1000个周期以上的95%以上,速率为5C。全细胞具有0.8 CO 0.8 CO 0.1 Mn 0.1 Mn 0.1 O 2阴极的预期,预期的能量密度和能量密度的增加,同时保留了5C的250个周期的能力的91%,以表明我们的发现在5C中显示出良好的良好的良好态度,该良好的良好的良好态度的良好的良好态度是良好的途径。增强的能量密度。l
2D 纳米材料被定义为厚度为一个或几个原子的材料(图 1),其横向尺寸在纳米到微米尺度 1 。由于其出色的性能和多种新化学性质,它们为储能领域开辟了新前景 1 。在储能方面特别受关注的材料家族包括石墨烯 2、3、过渡金属氧化物 (TMO) 1、2D 过渡金属二硫属化物 (TMD) 4、5 和 MXenes(2011 年发现的一类 2D 过渡金属碳化物和氮化物)6。2D 纳米材料在超级电容器和高倍率电池中显示出巨大的应用潜力。2D 纳米材料具有固有的高表面积,可以进行化学功能化,具有离子嵌入能力,并且与最先进的传统电池材料不同,可以以惊人的倍率运行。此外,二维纳米材料机械强度高 6 ,堆积密度高 7, 8 ,是可穿戴电子产品中柔性、微型、超薄储能装置的理想选择。这是本项目追求的终极应用。
曾经用水水文,允许在低温下通过聚合产生玻璃。上面在图1中说明了化学反应。作为TEO的情况,基于硅的溶胶 - 凝胶工艺是最受过研究的过程。使用最广泛的金属烷氧化物是烷氧基硅烷,例如四甲氧基硅烷(TMOS),(3-甲状腺氧基氧甲基丙基) - 三甲氧基硅烷(GPTMS),甲基三甲氧基硅烷(MTES)和3--(三甲基氧基二酰基)丙氧基甲基丙二醇甲基甲基丙二醇甲基甲基甲基丙烯酸酯(甲基甲基甲基甲基苯甲酸酯)使基于硅的溶胶 - 凝胶过程主要在杂交材料形成中的主要特征是使用有机修饰的硅烷的有机基团简单地掺入。的确,在通常使用的水性介质中,Si-C键增强了针对水解的稳定性,对于许多金属 - 碳键来说,情况并非如此,因此可以轻松地在形成的网络中轻松合并各种有机基团。溶胶 - 凝胶反应也是可能的。单独或与其他烷氧化物(如TEOS)组合,通常在溶胶 - 凝胶过程中使用其他烷氧化物,例如铝,钛酸盐,锆石等。金属和过渡金属烷氧对水解和凝结反应的反应性更高。在参考文献[8]中,报告并讨论了有关SOL-GEL技术的更多详细信息。
具有钙钛矿和相关结构的第一行 (3d) 过渡金属氧化物 (TMOs) 为发现新奇的量子现象提供了肥沃的土壤,因为自旋、电荷、轨道和晶格自由度之间有着密切的相互作用 [1-3]。在铜氧化物中发现非常规高温超导性是最著名的例子之一 [4-6],因此它鼓励人们不断努力在 3d TMO 中寻找更多非常规超导系统。作为元素周期表中与铜最近的邻居,镍氧化物 (镍酸盐) 自 20 世纪 90 年代初以来就作为高温超导最有希望的候选者而备受关注 [7-9]。然而,直到最近才在该方向取得实验突破。 2019年,Li等人利用CaH 2通过钙钛矿相的拓扑还原反应成功合成了空穴掺杂的无限层Nd 1-x Sr x NiO 2 薄膜,并发现了𝑇 c 在9 ~ 15 K左右的超导性[10-12]。这一发现引发了许多关于铜酸盐和镍酸盐之间相同点和不同点的理论讨论[13-16]。后来发现,在12.1 GPa下,Pr 0.82 Sr 0.18 NiO 2 薄膜的𝑇 c 可以提高到30 K以上,这凸显了进一步提高超导镍酸盐𝑇 c 的潜力[17]。
Igor Aharonovich 是一位屡获殊荣的科学家,致力于研究能够生成、编码和分发量子信息的量子源的前沿研究。作为 UTS 数学和物理科学学院的教授,Igor 研究固体中的光学活性缺陷,旨在识别新一代超亮固态量子发射器。他对该领域的贡献包括发现金刚石和六方氮化硼中的新色心,以及开发利用这些材料设计纳米光子器件的新方法。他是 ARC 变革性超光学材料 (TMOS) 卓越中心的首席研究员,并领导一项国际合作,研究纳米材料六方氮化硼 (hBN) 中晶体缺陷或缺陷的化学结构。 2013 年,他在 UTS 成立了纳米光子学研究小组,2015 年晋升为副教授,2018 年晋升为正教授。他的研究小组探索宽带隙材料中的新量子发射器,旨在在单个芯片上制造量子纳米光子器件,用于下一代量子计算、密码学和生物传感。2016 年,Igor 和他的团队发现了第一个基于 hBN 缺陷的 2D 材料中的量子发射器,它们在室温下工作。他合著了 200 多篇同行评审的出版物,其中包括一篇被引用次数最多的关于金刚石光子学的评论。他还为固体纳米光子学撰写了路线图
在光电探测器技术中,瓶颈被确定为能够检测低强度电磁辐射的新型材料的挑战,并且与综合电路(IC)制造也兼容。在各种金属氧化物半导体中,基于过渡金属氧化物(TMOS)材料更适合于由于其宽带,热稳定性和化学稳定性而导致的紫外线(UV)光电探测器应用。尤其是,三氧化钨(WO 3)已被证明是光子应用中最合适的候选者,包括电动型,光色素和气体传感器设备。在此,以增强性能增强的基于WO 3的光电探测器测试设备的开发已集中。WO 3薄膜以不同的氧局压(P O 2)的形式沉积在SIO 2 /Si底物上,并使用射频(RF)Magnetron溅射技术沉积在溅射压力条件下。在论文的第一部分中,溅射技术(如P o 2)中最重要的生长参数和用于沉积WO 3薄膜的溅射压力是根据光电探测器测试设备的性能进行了优化的。使用各种表征技术(包括X射线衍射(XRD),田间发射扫描电子显微镜(FESEM),X射线光电学光谱(XPS),Ra-Many和Atomic Force Microscopy(AFM),对结构,形态和化学状态进行了分析。Ti/Wo 3/Ti测试磁发炉在382 nm的紫外线照明下显示出0.166 a/w的较高响应性,在非常低的功率密度为0.66 mW/cm 2的情况下。生长的WO 3薄膜用于使用钛电极(TI)电极的Fabiale Metal-Metal-Senemenductor-Metal(MSM)平面结构化光电探测器测试设备,并测量了光电探测器参数,例如光电构成,响应率,响应性,检测性,检测率和外部量子效率(EQE)。为了实现从紫外线到可见区域的多光谱吸收,在论文的第二部分中介绍了新的基于WO 3的异质结构。最初,溅射基于石墨烯的溅射(GR/WO 3)异质结构被制造以研究紫外可见的光电探测器性能。GR/WO 3异质结构在512 nm的可见照明下达到了0.085 A/W的最大响应性。然而,由于石墨烯的某些局限性,WS 2 /WO 3异质结构是通过化学蒸气沉积(CVD)技术将WS 2纳米结构在WO 3层上种植到WO 3层的方法。在这里,使用互插的银(AG)电极制造Ag /WS 2 /WO 3 /Ag光电探测器测试设备。由于WS 2的纳米结构和外部电子迁移率的形成,在紫外线和可见的照明下分别实现了2.94 A/W和2.01 A/W的高响应性。获得的结果测试是WS 2 /WO 3异质结构是宽带紫外可见光电探测器的有前途的候选者,并且可以使用其他TMO和TMD进行相同的策略,以实现光电式Decessices的高性能光电探测器。
摘要:三氧化钼 (MoO 3 ) 是一种重要的过渡金属氧化物 (TMO),由于其在现有技术和新兴技术(包括催化、能源和数据存储、电致变色器件和传感器)中的潜力,在过去几十年中得到了广泛的研究。最近,人们对二维 (2D) 材料的兴趣日益浓厚,与块体材料相比,二维材料通常具有丰富的有趣特性和功能,这导致了对 2D MoO 3 的研究。然而,大面积真正的 2D(单原子层至几原子层厚)MoO 3 尚未实现。在这里,我们展示了一种简单的方法来获得晶圆级单层非晶态 MoO3,该方法使用 2D MoS2 作为起始材料,然后在低至 120°C 的基板温度下进行紫外臭氧氧化。这种简单而有效的过程可产生具有晶圆级同质性的光滑、连续、均匀和稳定的单层氧化物,这通过几种表征技术得到证实,包括原子力显微镜、多种光谱方法和扫描透射电子显微镜。此外,使用亚纳米 MoO3 作为夹在两个金属电极之间的活性层,我们展示了最薄的基于氧化物的非挥发性电阻开关存储器,该存储器具有低压操作和高开/关比。这些结果(可能可扩展到其他 TMO)将使进一步探索亚纳米化学计量 MoO3 成为可能,扩展超薄柔性氧化物材料和器件的前沿。关键词:晶圆级、单层、氧化钼、非晶态、电阻开关存储器