当 CS 为高电平时,TMP121 和 TMP123 会持续将温度转换为数字数据。CS 必须保持高电平至少一个转换时间(最大 320ms)才能更新温度数据。通过将 CS 拉低来启动从 TMP121 和 TMP123 读取温度数据,这将导致任何正在进行的转换终止,并使设备进入模拟关断状态。在模拟关断期间,静态电流降低至 1 µA。一旦 CS 被拉低,在 CS 下降之前来自上次完成的转换的温度数据将被锁存到移位寄存器中,并在 SCK 下降沿的 SO 上输出。16 位数据字首先输出符号位,然后是 MSB。在升高 CS 之前可以读取 16 位字的任何部分。TMP121 和 TMP123 通常需要 0.25 秒才能完成一次转换,在此期间消耗 50 µ A 电流。如果 CS 保持高电平的时间超过一个转换时间周期,则 TMP121 和 TMP123 将进入空闲模式 0.25 秒,仅需要 20 µ A 电流。每 0.5 秒开始一次新转换。图 2 描述了 TMP121 和 TMP123 的转换时序。
当 CS 为高电平时,TMP121 和 TMP123 会持续将温度转换为数字数据。CS 必须保持高电平至少一个转换时间(最大 320ms)才能更新温度数据。通过将 CS 拉低来启动从 TMP121 和 TMP123 读取温度数据,这将导致任何正在进行的转换终止,并使设备进入模拟关断状态。在模拟关断期间,静态电流降低至 1 µA。一旦 CS 被拉低,在 CS 下降之前来自上次完成的转换的温度数据将被锁存到移位寄存器中,并在 SCK 下降沿的 SO 上输出。16 位数据字首先输出符号位,然后是 MSB。在升高 CS 之前可以读取 16 位字的任何部分。TMP121 和 TMP123 通常需要 0.25 秒才能完成一次转换,在此期间消耗 50 µ A 电流。如果 CS 保持高电平的时间超过一个转换时间周期,则 TMP121 和 TMP123 将进入空闲模式 0.25 秒,仅需要 20 µ A 电流。每 0.5 秒开始一次新转换。图 2 描述了 TMP121 和 TMP123 的转换时序。
当 CS 为高电平时,TMP121 和 TMP123 会持续将温度转换为数字数据。CS 必须保持高电平至少一个转换时间(最大 320ms)才能更新温度数据。从 TMP121 和 TMP123 读取温度数据时,需要将 CS 拉低,这将导致任何正在进行的转换终止,并使器件进入模拟关断状态。在模拟关断期间,静态电流降至 1µA。一旦 CS 被拉低,在 CS 下降之前最后一次完成的转换的温度数据将被锁存到移位寄存器中,并在 SCK 下降沿的 SO 上输出。16 位数据字首先输出符号位,然后是 MSB。在提高 CS 之前可以读取 16 位字的任何部分。TMP121 和 TMP123 通常需要 0.25 秒才能完成转换,在此期间消耗 50µA 电流。如果 CS 保持高电平的时间超过一个转换时间周期,则 TMP121 和 TMP123 将进入空闲模式 0.25 秒,仅需 20 µA 电流。每 0.5 秒开始一次新转换。图 2 描述了 TMP121 和 TMP123 的转换时序。
当 CS 为高电平时,TMP121 和 TMP123 会持续将温度转换为数字数据。CS 必须保持高电平至少一个转换时间(最大 320ms)才能更新温度数据。通过将 CS 拉低来启动从 TMP121 和 TMP123 读取温度数据,这将导致任何正在进行的转换终止,并使设备进入模拟关断状态。在模拟关断期间,静态电流降低至 1 µA。一旦 CS 被拉低,在 CS 下降之前来自上次完成的转换的温度数据将被锁存到移位寄存器中,并在 SCK 下降沿的 SO 上输出。16 位数据字首先输出符号位,然后是 MSB。在升高 CS 之前可以读取 16 位字的任何部分。TMP121 和 TMP123 通常需要 0.25 秒才能完成一次转换,在此期间消耗 50 µ A 电流。如果 CS 保持高电平的时间超过一个转换时间周期,则 TMP121 和 TMP123 将进入空闲模式 0.25 秒,仅需要 20 µ A 电流。每 0.5 秒开始一次新转换。图 2 描述了 TMP121 和 TMP123 的转换时序。
3 使用 EXP5000 飞行...................................................................... 25 简介...................................................................................... 25 启动 EXP5000.............................................................................. 26 启动设置................................................................................... 29 设置 HSI................................................................................... 30 使用 EXP5000 的 GPS/VHF 系统............................................. 32 使用 S-TEC 55X 自动驾驶仪和 EXP5000..................................... 33 使用 S-TEC 1500 自动驾驶仪和 EXP5000..................................... 39 使用 S-TEC IntelliFlight 2100 自动驾驶仪和 EXP5000 42 使用其他自动驾驶仪和 EXP5000(仅限 PFD 530-00200-() 软件)..... 46 使用 EXP5000 进行精确飞行............................................................. 50 使用 EXP5000 进行进近............................................................. 52
在中断模式 (TM = 1) 下,当温度连续多次等于或超过 T HIGH 时,ALERT 引脚将变为活动状态。ALERT 引脚保持活动状态,直到发生任何寄存器的读取操作,或设备成功响应 SMBus 警报响应地址。如果设备处于关机模式,ALERT 引脚也将被清除。一旦 ALERT 引脚被清除,只有当温度降至 T LOW 以下时,它才会再次变为活动状态。当温度降至 T LOW 以下时,ALERT 引脚将变为活动状态并保持活动状态,直到通过任何寄存器的读取操作或对 SMBus 警报响应地址的成功响应将其清除。一旦 ALERT 引脚被清除,上述循环将重复,当温度等于或超过 T HIGH 时,ALERT 引脚变为活动状态。也可以通过使用通用呼叫复位命令复位设备来清除 ALERT 引脚。这还将清除设备中内部寄存器的状态,使设备返回到比较器模式 (TM = 0)。