背景。认知通常在脑部疾病中受到影响。非侵入性脑刺激(NIB)可能具有高耐受性的认知作用。这项荟萃分析评估是经颅磁刺激(TMS)和经颅直流电流刺激(TDC)在改善认知,精神分裂症,痴呆,痴呆,帕金森病,帕金森病,中风,创伤性脑损伤和多发性sclerisosis中的疗效。方法。进行了Prisma系统的搜索,以进行随机对照试验。Hedges的G用于量化TMS/TDCS诉Sham后认知变化的效果大小(ES)。由于不同的认知功能可能对TMS/TDC具有不平等的敏感性,因此我们分别评估了对:注意/警惕,工作记忆,执行功能,处理速度,言语流利性,口头学习和社交认知的影响。结果。我们包括82项研究(n = 2784)。对于工作记忆,TMS(ES = 0.17,P = 0.015)和TDC(ES = 0.17,P = 0.021)均表现出很小但显着的影响。年龄正阳性地调节了TMS的效果。tdcs优于假注意/警惕性(ES = 0.20,p = 0.020)。这些重大影响在脑部疾病的类型中没有差异。对于其他五个认知领域而言并不重要。结论。我们的结果表明,TMS和TDC都会引起对工作记忆的较小的反诊断作用,TDC还提高了诊断范围内的注意力/警惕性。对其他领域的影响并不重要。观察到的ES很小,但即使是轻微的认知改善也可能有助于日常运作。虽然Nibs可以是一种耐受性良好的治疗方法,但其效果似乎是特定的,仅适用于现实的指示(即引起工作记忆或注意力的较小改善)。
摘要 最先进的导航经颅磁刺激 (nTMS) 系统可以显示 TMS 线圈相对于受试者大脑结构磁共振图像 (MRI) 的位置并计算感应电场。然而,TMS 的局部效应会通过白质网络传播到大脑的不同区域,目前还没有商业或研究神经导航系统可以在 TMS 期间实时突出显示大脑的结构连接。缺乏实时可视化可能会忽略大脑连接的关键个体间差异,并且无法提供针对大脑网络的机会。相比之下,实时纤维束成像可以即时调整参数和详细探索连接,这在计算上效率低下,并且受限于离线方法。为了针对大脑结构连接,特别是在基于网络的治疗(如重度抑郁症)中,需要一种基于实时纤维束成像的神经导航解决方案来解释每个人独特的大脑连接。这项工作的目的是开发一种实时纤维束成像辅助 TMS 神经导航系统并研究其可行性。我们提出了一个模块化框架,使用并行传输方法将扩散 MRI 数据的离线(准备)分析与在线(实时)概率纤维束成像无缝集成。对于纤维束成像和神经导航,我们分别结合了我们的开源软件 Trekker 和 InVesalius。我们使用合成数据和四名健康志愿者的 MRI 扫描来评估我们的系统,这些数据和扫描数据是通过多壳高角分辨率扩散成像协议获得的。通过比较流线计数和重叠与基于一亿条流线滤波的离线纤维束成像结果来研究四个主要 TMS 目标,评估了我们的在线方法的可行性。我们开发的实时纤维束成像辅助 TMS 神经导航系统展示了先进的纤维束成像技术,具有交互式参数调整和通过创新的不确定性可视化方法实时可视化数千条流线的功能。我们的分析表明,受试者和 TMS 目标在流线数量方面存在相当大的差异,例如,虽然在受试者 #4 的视觉皮层 (V1) 上的 TMS 目标上观察到了 15,000 条流线,但在受试者 #3 的 V1 中,没有获得流线。与离线纤维束图的重叠分析表明,实时纤维束图可以快速覆盖目标区域连接的很大一部分,通常在几秒钟内超过离线方法的覆盖范围。例如,在
俄罗斯联邦科学和高等教育部 联邦国家自治高等教育机构 “俄罗斯国立职业师范大学” 工程和师范教育学院 机械工程技术、认证和职业培训方法学系 我可以: TMS 部门负责人 _________________ N.V. 。Borodina “____”________________2019 制定组织和执行校准工作的质量指南 培训领域的最终资格认证工作 03/44/04 培训简介“机械工程和材料加工”简介中的专业培训(按行业) 《机械工程中的认证、计量和质量管理》表演者:ZKM-405S D.D.组学生Kostareva 负责人:副教授、博士ped。科学,TMS A.S. 系副教授Krivonogova 标准控制员:副教授,理学博士候选人ped。科学,TMS A.S. 系副教授Krivonogova 叶卡捷琳堡 2019
兴奋/抑制失衡被认为是自闭症谱系障碍 (ASD) 认知症状的神经生物学基础。使用磁共振波谱 (MRS) 的研究试图表征 ASD 中的 GABA 和谷氨酸脑水平。然而,报告的结果好坏参半。在这里,我们通过实施结合 MRS 和经颅磁刺激 (TMS) 的更全面方法来表征 ASD 中 GABA 系统的神经化学和生理方面。一组 16 名年轻 ASD 成人和一组 17 名对照者参与了这项研究。我们分别使用 MEGAPRESS 和 PRESS 序列进行了一次 MRS 会话来评估运动皮层 GABA + 和谷氨酸 + 谷氨酰胺 (Glx) 水平。此外,还实施了 TMS 实验,包括成对脉冲 (SICI、ICF 和 LICI)、输入输出曲线和皮质静息期以探测皮质兴奋性。我们的结果表明,与对照组相比,ASD 组的 Glx 显著增加,而 GABA + 水平保持不变。单次 TMS 测量值在组间没有差异,尽管探索性组内分析显示 ASD 的 SICI5ms 抑制受损。重要的是,我们观察到对照组的 GABA 水平与输入输出 TMS 募集曲线(斜率和 MEP 振幅)测量值之间存在相关性,但在 ASD 中没有,这通过组间直接比较进一步证明。在这项探索性研究中,我们发现 Glx 水平增加的证据,这可能导致 ASD 兴奋/抑制失衡,同时强调了开展进一步更大规模研究以从互补角度研究 GABA 系统的相关性,使用 MRS 和 TMS 技术。
摘要背景:为了将经颅电刺激 (tES) 应用于运动皮层,通常使用经颅磁刺激 (TMS) 的运动诱发电位来识别运动热点。本研究的目的是验证一种基于脑电图 (EEG) 的新型运动热点识别方法的可行性,该方法使用机器学习技术作为 TMS 的潜在替代方案。方法:在 30 名受试者执行简单的手指敲击任务时,使用 63 个通道测量 EEG 数据。从六个频带(delta、theta、alpha、beta、gamma 和 full)提取 EEG 数据的功率谱密度,并独立用于训练和测试用于运动热点识别的人工神经网络。将 TMS 识别的各个运动热点的 3D 坐标信息与我们基于 EEG 的运动热点识别方法估计的坐标信息进行定量比较,以评估其可行性。结果:TMS 识别的运动热点位置与我们提出的运动热点识别方法之间的最小平均误差距离为 0.22 ± 0.03 厘米,证明了我们提出的基于 EEG 的方法的概念验证。当仅使用连接到运动皮层中部的 9 个通道时,测量的平均误差距离为 1.32 ± 0.15 厘米,表明实际使用基于相对较少的 EEG 通道的所提出的运动热点识别方法的可能性。结论:我们证明了我们新颖的基于 EEG 的运动热点识别方法的可行性。预计我们的方法可以作为 TMS 的运动热点识别的替代方案。特别是,当使用最近开发的与 EEG 设备集成的便携式 tES 设备时,它的可用性将显著提高。关键词:运动热点、脑电图、经颅电刺激、机器学习、人工神经网络
经颅磁刺激 (TMS) 是一种非侵入性脑刺激技术,能够调节皮质兴奋性。这种调节可能会影响负责特定认知过程的区域和网络,重复诱发的暂时性变化可以产生持久的影响。与专注于特定认知功能的认知训练结合使用时,TMS 的有效性可能会增强。玩电子游戏可以成为最佳的认知训练,因为它涉及不同的认知成分以及高水平的参与度和动机。本研究的目的是评估 TMS 和视频游戏训练在增强认知、特别是工作记忆和执行功能方面的协同作用。我们进行了一项随机 2 × 3 重复测量(刺激 × 时间)研究,将 27 名健康志愿者随机分配到主动间歇性 θ 爆发刺激组或假刺激组。在完成视频游戏 + TMS 训练之前、之后和 15 天后,使用综合神经心理学电池对参与者进行评估。训练包括 10 个环节,参与者玩 3D 平台视频游戏 1.5 小时。每次游戏结束后,TMS 都会作用于右背外侧前额叶皮层 (DLPFC)。所有参与者的视频游戏表现都有所提高,但我们没有发现刺激和视频游戏训练的协同效应。我们也没有发现与刺激相关的认知改善。我们通过线性回归探索了可能的混杂变量,例如年龄、性别和早期视频游戏经验。早期视频游戏经验与工作记忆和抑制控制的改善有关。这个结果虽然是探索性的,但突出了个体变量和先前经验对大脑可塑性的影响。
这项研究旨在通过提供基于经颅磁刺激(TMS)引起的运动诱发电位(MEP)的神经反馈来研究心理实践(运动图像训练)的影响。二十四名健康的右手受试者已入学。将受试者随机分配为两组:一个组给出了正确的TMS反馈(REAL-FB组)和一个被给予随机的False TMS反馈(Sham-FB组)的组。当目标圆在计算机监视器中心重叠的十字架时,想象的主题会想到开关。在实际FB组中,基于在Motor Imagery之前的试验中测得的MEP振幅提供了对受试者的反馈。相比之下,Sham-FB组的受试者的反馈值与MEP振幅无关。tms。MEP记录在右侧的右侧骨间肌肉中。我们在两组中评估了一次性练习和一次性练习后的运动表现。结果,在实时FB组和Sham-FB组之间的误差值变化百分比变化中观察到了显着差异。此外,在第4组和第五组中两组之间的MEP截然不同。因此,建议基于MEP的神经反馈可能会增强心理实践的影响。
在神经科学中,脑电图和神经影像学技术被广泛用于提高我们对脑机制的理解,并鉴定出最多样化的神经病理性的生物标志物(Tulay等,2019)。然而,电磁脑电图(E-MEG)和神经影像学技术(例如功能磁共振成像(fMRI))是互补的[即EEG/MEG技术具有出色的时间分辨率,可以在其空间分辨率和fmri assifique Assopta insosogy和其他neuiroimimimagimimage nyuremimage nimeique andique insologys上进行良好的时间分辨率。 (SPECT),正电子发射断层扫描(PET)和功能性近红外光谱(FNIRS)]。此外,这些技术的互补性导致了多模式整合的发展(Tulay等,2019)。近几十年来,技术进步使研究人员能够更加有效地整合不同的电生理和神经影像学技术,以提供最佳的空间和时间分辨率。具有出色的空间分辨率和可移植性,EEG经常与其他方法相结合,例如fMRI(Ostwald等,2010,2011,2011; 2012; Porcaro等,2010,2011)或FNIRS,经颅磁刺激(TMS)(TMS)(TMS)(TMS)(TMS)(Giambattistelli等,2014,2014; Tecchio; Tecchio; Tecchial; Tecranial et and crranial et and Crrist and and Crrist and and and and and and and and and and and and and and and and and and and and and and and and and and,以及2023(2023) Porcaro等人,2019b),以增强对健康和病理条件下脑过程的脑功能的理解(Buss等,2019)。此外,EEG与非侵入性脑刺激(NIB)相结合,例如TMS或TE,可以用作对脑病理学的潜在治疗和监测(Napolitani等,2014; Cottone等,2018; Porcaro et al。,2019b)。eeg加上适当和先进的数学方法,可以为神经退行性疾病提供标记并促进其诊断(Tecchio等,2015; Smits et al。,2016; Marino等,2019; Porcaro et al。本研究主题概述了当前的脑电图知识与65位作者通过11篇文章的其他技术相结合,其中包含两项评论,八个原始研究论文和一种方法(总计:30,624;截至2023年1月27日,截至2023年1月27日)。
Fiona Baumer,医学博士是斯坦福大学医学院神经病学助理教授。 她在波士顿儿童医院完成了儿童神经病学培训,并在斯坦福大学医学院完成了癫痫奖学金,在那里她是一名就读医师,并研究了对认知中癫痫发作的影响的研究。 她的研究重点是使用经颅磁刺激来测量和调节具有中心矛盾的自限性癫痫病的儿童的大脑连通性。 她还成为小儿癫痫研究联盟的积极参与者,也是小儿TMS映射站点的财团成员,以改善神经外科患者的TMS语言映射。Fiona Baumer,医学博士是斯坦福大学医学院神经病学助理教授。她在波士顿儿童医院完成了儿童神经病学培训,并在斯坦福大学医学院完成了癫痫奖学金,在那里她是一名就读医师,并研究了对认知中癫痫发作的影响的研究。她的研究重点是使用经颅磁刺激来测量和调节具有中心矛盾的自限性癫痫病的儿童的大脑连通性。她还成为小儿癫痫研究联盟的积极参与者,也是小儿TMS映射站点的财团成员,以改善神经外科患者的TMS语言映射。