摘要 引言 痉挛是中风后常见的并发症,与运动恢复不良和活动受限有关。经颅磁刺激 (TMS) 和体外冲击波治疗 (ESWT) 都是治疗中风后痉挛 (PSS) 的有效方法。但目前尚无研究探讨 TMS 联合 ESWT 治疗 PSS 的安全性和有效性。方法与分析本研究将是一项前瞻性、单中心、随机、析因、对照临床试验。在本试验中,136 名 PSS 患者将随机分为 4 组:实验组 1(TMS)、实验组 2(ESWT)、实验组 3(ESWT+TMS)和对照组,每组 34 名患者;所有患者均接受常规康复治疗。结果测量将通过 4 个时间点进行评估:基线(T0)、开始治疗后 2 周(T1)、开始治疗后 4 周(T2)和随访(治疗结束后 4 周,T3)。主要结果是 T2 时的改良 Ashworth 量表。次要结果包括改良 Tardieu 量表(用于评估痉挛程度)、Fugl-Meyer 量表和运动功能运动范围 (ROM)、卒中特定生活质量量表 (SS-QOL) 和改良 Barthel 指数(用于评估生活活动)、通过 TMS-表面肌电图 (EMG) 测量的皮质兴奋性、通过功能性近红外光谱 (fNIRS) 测量的大脑皮层氧浓度和通过 EMG 测量的 H max /M max 比率。伦理与传播 本研究方案已于2024年1月24日经解放军陆军医学中心伦理委员会批准(批准文号:2024-04)。本研究将通过同行评审的出版物和会议报告进行传播。 试验注册号 本研究已在中国临床试验注册中心注册( https://www.chictr. org.cn/ ;唯一标识符:ChiCTR2400080862;数据:2024年2月9日;研究方案V. 2.0)。
“使用基于 CFD 的 TMS 功能模型以及 Simcenter STAR-CCM+ 和 Simcenter Battery Design Studio,模拟和实验测量之间实现了紧密一致,以超过 90% 的准确率验证了模型与实验的一致性”
1985年引入的经颅磁刺激(TMS)已成为研究脑掩盖关系和治疗干预措施的重要工具。重复的TMS(RTMS)作为一种治疗工具,已经显示出对包括自闭症在内的各种神经精神病疾病的希望,这些神经精神病患者影响了大约1%的全球人群。证据表明,非典型神经可塑性是自闭症神经生物学的特征。与神经型对照相比,使用TMS范式(例如theta-burst刺激(TBS))的研究表明,自闭症成年人运动皮层的过度长期增强(LTP)的形式过多的神经可塑性或过度塑性性。超塑性可能会对认知和行为结果产生负面影响。我们提出的基于神经塑性的RTMS干预方案旨在解决自闭症成年人的运动功能,感觉敏感性和执行功能困难。我们提出了一个可测试的框架,以评估运动,感觉和背外侧前额叶皮层中的神经可塑性,假设自闭症成年人的过塑性存在。我们预计这种超塑性是自闭症成年人的运动,感觉和执行功能困难的基础。此外,我们建议研究双侧RTM的功效,以降低过度塑性并改善自闭症成年人的这些功能。这种方法不仅试图增强治疗选择,而且还提供了对一些常见自闭症相关困难的脑机制的生物学见解。
目的:电场方向对于优化经颅磁刺激 (TMS) 中的神经元兴奋至关重要。然而,由于在几毫秒内操纵 TMS 诱导的刺激方向存在技术挑战,刺激方向对短间隔皮层内抑制 (SICI) 和皮层内促进 (ICF) 的影响尚不清楚。我们旨在评估 SICI 和 ICF 范式的方向敏感性,并确定运动诱发电位 (MEP) 促进和抑制的最佳方向。方法:我们对 12 名健康受试者施加成对脉冲多通道 TMS,在四个刺激间隔 (ISI) 内以相同、相反和垂直的方向施加条件和测试刺激,以产生不应期、SICI 和 ICF。结果:MEP 调制受条件和测试刺激方向的影响,当两个脉冲在同一方向时最强。 2.5 毫秒和 6.0 毫秒 ISI 的 MEP 调制对方向变化的敏感性高于 0.5 毫秒和 8.0 毫秒 ISI。结论:SICI 和 ICF 方向敏感性表现出对条件刺激方向的复杂依赖性,这可能通过抑制性和兴奋性神经元群的解剖和形态排列来解释。意义:介导 SICI 和 ICF 的不同机制对特定 ISI 的刺激方向敏感,描述了一种结构 - 功能关系,可在皮质层面最大化每种效果。
大脑对刺激的反应性随着皮质兴奋状态的快速变化而波动,这可以通过脑电图 (EEG) 中的振荡反映出来。例如,经颅磁刺激 (TMS) 对运动皮质引起的运动诱发电位 (MEP) 的幅度会随着每次试验而变化。到目前为止,还无法对导致这种兴奋性波动的皮质过程进行单独估计。在这里,我们提出了一种数据驱动的方法,使用监督学习方法在健康人中推导出单独优化的 EEG 分类器,该方法将 TMS 前的 EEG 活动动态与 MEP 幅度联系起来。我们的方法能够考虑多个大脑区域和频带,而无需先验定义它们,它们的复合相位模式信息决定了兴奋性。与标准固定空间滤波器提取的 𝜇 振荡相位相比,个性化分类器可将皮质兴奋状态的分类准确率从 57% 提高到 67%。结果表明,对于使用的 TMS 协议,兴奋性主要在 𝜇 振荡范围内波动,相关皮质区域聚集在受刺激的运动皮质周围,但受试者之间的相关功率谱、相位和皮质区域存在差异。这种新颖的解码方法允许对皮质兴奋状态进行因果研究,这对于个性化治疗性脑刺激也至关重要。
皮质(M1),用于估计皮质脊髓兴奋性的变化。但是,多个元素在MEP的生成中起作用,因此即使是峰值到峰幅度等简单的措施也具有复杂的解释。在这里,我们总结了有关有助于MEP的神经途径和电路的当前已知知识,并讨论在解释在运动处理和具有神经系统状况的患者背景下在休息时测量的MEP振幅时应考虑的因素。在这项工作的最后一部分中,我们还讨论了如何将新兴的技术方法与TMS结合在一起,以提高我们对可能影响MEP的神经底物的理解。总体而言,本综述旨在强调TMS的功能和局限性,这些功能和局限性在试图解开有助于生理状态相关的皮质运动兴奋性变化的源时要认识到。
谨代表矿物、金属与材料学会 (TMS) 和大会组织者,我们热烈欢迎您参加本次盛会。材料科学与工程领域正处于发展的关键时刻,这在很大程度上要归功于我们学会通过材料基因组计划和集成计算材料工程 (ICME) 对未来材料发现、开发、制造和部署的大胆设想。在 2011 年第一届集成计算材料工程世界大会取得巨大成功的基础上,第二届 ICME 世界大会 (ICME 2013) 将召集 ICME 利益相关者(包括研究人员、教育工作者和工程师),共同探讨 ICME 作为一门工程学科在全球的最新进展。由 TMS 牵头的关于 ICME 在汽车、航空航天和海运业实施情况的研究的最终报告也将在 ICME 2013 上发布。
情感和焦虑症是全球最普遍,最具事件的精神疾病。使用非侵入性脑刺激(NIB)和类似技术对这些疾病的治疗方法进行了广泛研究。在本文中,我们讨论了闭环设置中NIB和神经反馈的组合及其在情感症状和疾病中的应用。为此,我们首先通过介绍一些NIB的主要原始发现提供了这种组合的基本原理,主要关注经颅磁刺激(TMS)和Neurofeactback,以及包括基于电脑电图(EEG)的方案(EEG)和功能磁共振成像(FMRI)。然后,我们提供了将实时神经反馈与NIBS方案相结合的研究范围审查,其中所谓的闭环大脑状态依赖性神经调节(BSD)。最后,我们讨论了TMS的伴随使用和实时功能近红外光谱(FNIRS)作为对情感和焦虑症的当前局限性的解决方案。
摘要 — 经颅磁刺激 (TMS) 是一种非侵入性、有效且安全的神经调节技术,可用于诊断和治疗神经和精神疾病。然而,大脑组成和结构的复杂性和异质性对准确确定关键大脑区域是否接收到正确水平的感应电场提出了挑战。有限元分析 (FEA) 等数值计算方法可用于估计电场分布。然而,这些方法需要极高的计算资源并且非常耗时。在这项工作中,我们开发了一个深度卷积神经网络 (DCNN) 编码器-解码器模型,用于从基于 T1 加权和 T2 加权磁共振成像 (MRI) 的解剖切片实时预测感应电场。我们招募了 11 名健康受试者,并将 TMS 应用于初级运动皮层以测量静息运动阈值。使用 SimNIBS 管道从受试者的 MRI 开发头部模型。将头部模型的整体尺寸缩放至每个受试者的 20 个新尺寸尺度,形成总共 231 个头部模型。进行缩放是为了增加代表不同头部模型尺寸的输入数据的数量。使用 FEA 软件 Sim4Life 计算感应电场,将其作为 DCNN 训练数据。对于训练好的网络,训练和测试数据的峰值信噪比分别为 32.83dB 和 28.01dB。我们模型的关键贡献在于能够实时预测感应电场,从而准确高效地预测目标脑区所需的 TMS 强度。