本报告是在《2019-2023 年循环经济监测与评估工作计划》背景下编写的。该计划是荷兰统计局、环境科学研究所(莱顿大学)、CPB 荷兰经济政策分析局、国家公共卫生与环境研究所、荷兰企业局、Rijkswaterstaat(政府道路和水道服务机构)和荷兰应用科学研究组织 (TNO) 之间的合作,由 PBL 荷兰环境评估局监督。荷兰政府的目标是到 2050 年实现完全循环经济。工作计划的目的是监测和评估实现这一目标的进展情况,并为明智的政策制定过程提供必要的知识。有关此工作计划的更多信息,请访问 www.pbl.nl/en。
直接聚变驱动器 (DFD) 是一种核聚变发动机,可为任何航天器产生推力和电力。它是一种紧凑型发动机,基于 D-3He 无中子聚变反应,使用普林斯顿场反转配置进行等离子体约束,并使用奇偶校验旋转磁场作为加热方法实现聚变。推进剂是氘,它被聚变产物加热,然后膨胀到磁喷嘴中,产生排气速度和推力。根据任务要求,单个发动机的功率范围可以在 1 - 10 MW 之间,并且能够实现 4 N 至 55 N 的推力,具体取决于所选功率,比冲约为 10 4 s。在这项工作中,我们介绍了使用这种发动机到达和研究太阳系外边界的可能性。目标是在不到 10 年的时间内,携带至少 1000 公斤的有效载荷,前往柯伊伯带及更远的海王星外天体 (TNO),如矮行星鸟神星、阋神星和鸟神星,从而可以执行从科学观测到现场操作等各种任务。所选的每个任务剖面图都尽可能简单,即所谓的推力-滑行-推力剖面图,为此,每个任务分为 3 个阶段:i. 从低地球轨道逃离地球引力的螺旋轨迹;ii. 行星际旅行,从离开影响区到滑行阶段结束;iii. 机动与矮行星会合。图中给出了每次机动的推进剂质量消耗、初始和最终质量、速度和 ∆ V。轨迹分析针对两种情况进行:简化场景,其中 TNO 在黄道平面上没有倾斜,真实场景,其中考虑了真实的倾斜角。此后,研究了多种场景,以达到 125 AU,以便研究太阳磁层的外部边界。我们的计算表明,由 DFD 推进的航天器将在有限的时间内以非常高的有效载荷与推进剂质量比探索太阳系的外部边界,开辟前所未有的可能性。
ceris,Instituto superion t´ecnico,里斯本大学,葡萄牙b Instituto geol。 School of Civil Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK g Universit ` a Degli Studi di Milano, Dipartimento di Scienze Della Terra, Milan, Italy h Geological Survey of Austria, Austria i University of Basel, Department of Environmental Sciences, Hydrogeology, Applied and Environmental Geology, Switzerland j Technical University of Munich, Chair of可再生和可持续能源系统,德国K代尔夫特技术大学和荷兰TNO,L工程技术学院,塞浦路斯技术大学,塞浦路斯市,塞浦路斯市,塞浦路斯大学,荷兰大学纽约市环境设计系的塞浦路斯市纽约市纽约市纽约市纽约市纽约市的纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市
量子计算是对当前密码学的潜在威胁。但是,这种威胁并不影响所有加密算法和应用程序。本文档介绍了TNO设计的一种方法,以评估公司将来面临的风险。它提出了一种系统的简单方法来制作加密清单,并为其易受量子攻击的脆弱性测试。该方法使用了风险分数系统,该系统考虑了现有的加密算法对量子攻击的阻力或脆弱性,攻击对系统的影响以及过渡到抗量子抗性解决方案所需的努力。此外,还尝试使更广泛的受众访问此风险评估,包括那些在加密专业方面的专业知识,例如通过流程图和整个过程中的步骤手册。该计划旨在为公司做好准备,以实现量子计算可能以有针对性的方式打破当前加密方法的未来:具有良好的风险评估
X. Ma, H. Bin, BT van Gorkom, TPA van der Pol, MJ Dyson, CHL Weijtens, SCJ Meskers, RAJ Janssen, GH Gelinck 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 电子邮件: rajjanssen@tue.n l M. Fattori 电气工程系 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 AJJM van Breemen, D. Tordera, GH Gelinck TNO/Holst Center High Tech Campus 31 Eindhoven 5656 AE, 荷兰 瓦伦西亚 C/ Chair of J. Beltran 2, Paterna 46980, 西班牙 RAJ Janssen 荷兰基础能源研究所 De Zaale 20, Eindhoven 5612 AJ, 荷兰
国际专家组和合作组织 国际组织 Marek Harsdorff 博士 - 国际劳工组织 (ILO) Michael Renner 和 Celia Garcia-Baños - 国际可再生能源协会 (IRENA) Nicola Cantore 博士 - 联合国工业发展组织 (UNIDO) 国际研究机构 Harry Fearnehough - 新气候研究所 (NCI) Jasper Donker 和 Xander van Tilburg - 荷兰能源研究中心 (TNO 的 ECN 部分) Hector Rodriguez 和 Helgenberger Sebastian 博士 - 高级可持续性研究所 (IASS) Shobhakar Dhakal 教授 - 亚洲理工学院 (AIT) Spyridon Stavropoulos 博士 - 伊拉斯谟幸福经济研究组织 (EHERO) Ho-Seok Kim 博士 - 韩国环境研究所 (KEI) 循证和倡导组织 William Brent 和 Rebekah Shirley - Power for All
浮动PV是相对较新但快速增长的光伏市场(PV)市场。到目前为止,文献中尚无有关操作浮动PV(FPV)系统的详细公共生命周期清单(LCI)数据。因此,荷兰研究组织TNO收集并分析了两个操作系统的LCI数据,并在第一个IEA PVPS任务12出版物中发布了结果。本研究仅关注一个单一的环境影响因子,即碳足迹。该研究的目的是在西欧的小内陆水体上的两种不同的浮动光伏系统的LCI数据,波高度非常低,以量化这些系统的碳足迹。浮动PV系统中PV模块的寿命,性能比和降解率与地面安装的PV系统相同,因为这些参数的经验数据是不可用的。
本报告介绍了电池护照的设计和实施,该护照适用于可充电锂离子电池,这些电池在移动领域开始使用,例如电动汽车。电池护照是一种(可能是分布式的)存储方式,包含一组有关电池组及其模块的静态和动态数据。部分数据可以在本地收集、存储和访问,而其他部分数据则“在云中”维护。引入电池护照的理由是,它们被认为在其生命周期内会增加价值(“减少、再利用、修复、再循环、恢复”)。电动汽车及其电池因此会改变所有权。电池需要维修和保养。电池可以在其他领域重复使用,例如电网平衡。废旧电池含有有价值的材料和危险化学品,可供回收和再利用。维护良好的电池数据和相关的访问控制将支持和改善决策,从而产生积极的经济和环境影响。正是出于这些原因,欧洲制定了有关电池和废旧电池的法规。TNO 以两个重点执行了该项目。1. 数据模型。
纳米多孔锡2 O 7(nptno)材料通过用离子液体(IL)作为指导温度的纳米多孔结构合成的溶胶 - 凝胶方法。nptno即使以50°C的充电速率,在5 c时为1000个周期和lini 0.5 mn 1.5 o 4-耦合的全细胞容量重新构成的全细胞能力接力为81%和87%的87%和87%cass in 1000 cycles at 1 c cycles at 1 c cycles at 1 c cycles nptno的高可逆能力为210 mAh g –1。 对1000个循环的NPTNO电极的研究表明,IL指导的介孔结构可以增强NPTNO细胞的可环性,这是由于缓解了重复的机械应力和由重复的LI +插入 - 插入 - 攻击过程引起的重复性机械应力和体积波动。 测得的LI +扩散系数从Galvanostatic间歇性滴定技术中表明,IL-启动策略确实确保了基于快速LI +扩散动力学的NPTNO细胞的快速再核能。 受益于纳米多孔结构,具有未阻碍的Li +扩散途径的NPTNO在基于钛基的氧化物材料中实现了Supe-rior速率能力,并且在TNO材料中具有最佳的全细胞环环性。 因此,证明了IL的模板潜力,并且出色的电化学性能确立了IL定向的NPTNO作为可快速回流LIB的有前途的阳极候选者。nptno的高可逆能力为210 mAh g –1。对1000个循环的NPTNO电极的研究表明,IL指导的介孔结构可以增强NPTNO细胞的可环性,这是由于缓解了重复的机械应力和由重复的LI +插入 - 插入 - 攻击过程引起的重复性机械应力和体积波动。测得的LI +扩散系数从Galvanostatic间歇性滴定技术中表明,IL-启动策略确实确保了基于快速LI +扩散动力学的NPTNO细胞的快速再核能。受益于纳米多孔结构,具有未阻碍的Li +扩散途径的NPTNO在基于钛基的氧化物材料中实现了Supe-rior速率能力,并且在TNO材料中具有最佳的全细胞环环性。因此,证明了IL的模板潜力,并且出色的电化学性能确立了IL定向的NPTNO作为可快速回流LIB的有前途的阳极候选者。
本文件由 ECTP(欧洲建筑、建筑环境和节能建筑技术平台)数字建筑环境委员会制定,特别得到了 Jesús Angel García Sánchez (Indra)、Isabel Pinto Seppä (VTT)、Sami 的支持Kazi (VTT)、Javier Bonilla Diaz (Acciona)、Niels Schreuder (AGC Glass Europe)、Miguel Segarra (Dragados)、Mathieu Schumann (EDF)、Laura Tordera (Ferrovial)、Simeon Oxizidis (IES R&D)、Antoine Dugué (NOBATEK/INEF4)、Rita Moura (PTPC)、José A. Chica (Tecnalia)、Ilari Aho (UPONOR)、Paul Cartuyvels (布伊格)、Yacine Rezgui (卡迪夫) University)、Jérôme Defrance (CSTB)、Sylvain Kubicki (LIST)、Rizal Sebastian (TNO)、César Valmaseda (Fundación CTIC)、Eduard Loscos (IDP)、Lizhen Huang (NTNU)、Spyridon Pantelis (REHVA)、Marco Alvise Bragadin (UNIBO)、Noemi Jiménez Redondo (CEMOSA)、Ignacio Pedrosa (Fundación CTIC) 、Pedro Martin Lerones (CARTIF) 和 Alain Zarli (CSTB/ECTP) 的支持销钉创新。