投票成员:1) 按照《输电设施所有者协议》组织 Midcontinent Independent System Operator, Inc.(特拉华州非股份公司 (TOA))的成员;或 2) 按照 TOA 第二条第 VI 节第 A.2.c 款有资格在咨询委员会中代表的州监管机构;或 3) 公认的公共消费者团体、环保团体或其他对 MISO 活动感兴趣的组织,并经 MISO 董事会认证有资格根据 TOA 第二条第 VI 节第 A.2.d 款参与选择咨询委员会代表。根据此处的定义,投票成员可以按照《利益相关者治理指南》对实体动议进行投票。注意:属于同一母公司的多个成员拥有一票集体投票权
摘要。本文介绍了旋转风扇、压缩机和涡轮叶片诊断的综合方法。关键的低速和高速旋转流体流动机械(风扇、蒸汽涡轮机和航空喷气发动机)面临机械损坏(由异物和侵蚀引起)、腐蚀和其他形式的材料疲劳(LCF、HCF、VHCF、TMF)的风险。叶片质量变化(沉积物的影响)和材料各向异性率导致模态特性变化,这些物体面临危险。为了监测叶片的实际运行状况和技术状态,采用了旋转叶片观察器方法(叶尖定时方法)。受监控的旋转叶片排和磁阻传感器的组合创建了一种编码器,其输出信号同时包含以下信息:- 由空气动力和质量力输入引起的叶片振动;- 瞬时转子转速;- 转子不平衡和振动;- 磁阻传感器与振动和旋转叶片的耦合条件。测量值是叶片到达固定观察者(安装在装配外壳上的磁阻传感器)的时间 (TOA)。TOA 受非周期性(瞬时理想转子转速)和周期性分量(叶片和转子振动)调制。TOA 的测量是通过频率法实现的,可用于典型的计数器卡和 AD/DA 转换器。利用记录(非均匀采样)数据的数值处理来分离 TOA
4.73 辐射光谱抛光。.............................118 4.74 平场辐射抛光。.............................118 4.75 推扫式辐射抛光。..............................119 4.76 光谱微笑插值。。。。。。。。。。。。。。。。。。...............121 4.77 阴影边框去除工具 ..........。。。。。。。。。。。。。。。。。。。。。。。122 4.78 模拟模块菜单。.................................123 4.79 表观反射率计算 ...........。。。。。。。。。。。。。。。。。。。。。。124 4.80 从地面参考反射光谱库计算 TOA 辐射度 .125 4.81 根据校准图像光谱验证 TOA 辐射度 ................127 4.82 根据校准图像光谱绘制验证样本 ..。。。。。。。。。。。。。128 4.83 工具菜单。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。129
5.60 辐射光谱抛光。.............................102 5.61 平场辐射抛光。.............................103 5.62 推扫式辐射抛光。......。。。。。。。。。。。。。。。。。。。。。。。104 5.63 光谱微笑插值 ...............................105 5.64 阴影边框去除工具 .........。。。。。。。。。。。。。。。。。。。。。。。107 5.65 模拟模块菜单。.................................108 5.66 视反射率计算 ..........。。。。。。。。。。。。。。。。。。。。。。109 5.67 从地面参考反射光谱库计算 TOA 辐射度 .111 5.68 根据校准图像光谱验证 TOA 辐射度 ................112 5.69 根据校准图像光谱绘制验证样本 ..。。。。。。。。。。。。。113 5.70 工具菜单。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。114
更多信息:Poikela,TimePix等。“ timePix3:一个65K频道混合像素读数芯片,带有TOA/TOT和稀疏读数。”仪器杂志9.05(2014):C05013。
印第安纳州的 SSIP 最初是通过与印第安纳州教育部 (IDOE) 外联部和州发展网络 (SDN) 合作实施的,作为学校改进的一部分。该计划最初旨在增加系统协调,并开始在三个站点学校内安装基于证据的实践选择。在实施的第二年,印第安纳州的州教育机构基础设施发生了重大变化,这导致最初开发的 SSIP 团队调查重组后的 IDOE 内的合作伙伴关系。最初的 SSIP 团队讨论了与学校/学区所做的工作,并讨论了有关 SSIP 的选项,包括印第安纳州 SiMR、ToA、逻辑模型(参见附录 A)和 SSIP 的整体实施。核心团队专注于建立内部和外部合作伙伴关系,以确保与提高三年级识字能力相关的协调和专业知识。ToA 保持不变,因为系统协调、MTSS/UDL 和基于循证实践 (EBP) 的早期识字是实现 SiMR 的基础组成部分。使用这些组件实现 SiMR 的途径需要持续关注数据并进行有效分析,以确保持续的质量改进。州团队和利益相关者不懈努力,开发了一个系统,以实现 ToA 中设定的目标:支持包容性实践,确保公平和机会,从而改善印第安纳州每个学生的成绩。
TOA BC-5000-2是WM-5225和WM-5265无线麦克风,WM-5325无线发射器和WT-5100便携式接收器的专用电池充电器。它与可选的AD-5000-2 AC适配器一起使用。BC-5000-2采用了镍金属氢化物(NI-MH)电池的快速充电系统,可在3小时内充满2个单位。
摘要。用于传播导波的压电超声波传感器可用于检查工程结构中的大面积区域。然而,导波声信号固有的色散和噪声、结构中的多重回波以及缺乏近似或精确的模型,限制了它们作为连续结构健康监测系统的使用。在本文中,研究了在板状结构上随机放置压电传感器网络以检测和定位人为损坏的实现。在厚度为 1.9 毫米的铝薄板上设置了一个以一发一收配置工作的宏纤维复合材料 (MFC) 传感器网络。使用离散小波变换在时间尺度域中分析信号。这项工作有三个目标,即首先使用传感器网络产生的超声波的短时小波熵 (STWE) 开发基于熵分布的损伤指数,其次确定备用宏光纤复合材料 (MFC) 传感器阵列检测人为损伤的性能,第三对收集的信号实施到达时间 (TOA) 算法,以定位人造圆形不连续的损伤。我们的初步测试结果表明,所提出的方法为损伤检测提供了足够的信息,一旦与 TOA 算法相结合,就可以定位损伤。
摘要:云与地球的辐射能量系统(CERES)能量平衡和填充(EBAF)产品 - 结合了Terra和Aqua卫星上的中等分辨率成像光谱仪(MODIS)仪器(MODIS)仪器,以创建地球辐射预算的记录(ERB)和相关的云特性。由于Terra和Aqua Orbit不再保持在固定的当地时间,EBAF最近过渡到CERES和NOAA-20上的可见红外成像辐射仪套件(VIIRS)仪器,以避免在记录中引入时间依赖性偏置。为了确保在纪录中的Terra,Terra和Aqua(Terra 1 Aqua)和NOAA-20部分之间进行平稳过渡,从任务之间的重叠期得出的区域气候调整将用于将整个记录固定在Terra 1 Aqua上。我们估计过渡后的全局月度异常中的随机误差为0.15 w m 2 2 2的大气顶(TOA)浮标为0.15 w m 2 2,云分数为0.1%,比相应异常的标准偏差小得多。由于ERB仪器的数量将从短短10年内减少到1个,因此EBAF记录中的数据差距很高,因此保持连续性的挑战。我们估计,2028年数据差距有33%的概率,2035年的概率为60%。使用一个卫星产品中计算出的TOA弹药和一项大气再分析的数据间隙桥接数据差距,导致误差比连续任务之间重叠时获得的误差大于4。
摘要:这项研究使用先进的数值和诊断方法来评估ECMWF(ERA5)与观察到的大气顶部(TOA)能量流量(TOA)能量流相结合的第五次重大全球重新分析,1985- 2018年期间。我们使用质量平衡的数据评估子午线以及海洋能量运输,并进行内部一致性检查。此外,还检查了ERA5中的水分和质量预算,并将使用ERA-Interim以及基于观察的估计值进行比较。结果表明,与ERA-Interim(4.74 6 0.09 PW)相比,ERA5(4.58 6 0.07 PW)在ERA5(4.58 6 0.07 PW)的峰值峰值(4.74 6 0.09 PW)较弱,其中ERA5的较高空间和时间分辨率可以作为可能的原因。ERA5中的海洋与能源运输至少从2000年开始(; 2.5 PW)是可靠的,因此,净弓形虫和横向能量在陆地上的不平衡处于陆上的顺序; 1 W m 2 2。旋转和旋转效应通常在ERA5中较小且暂时的变化较小。对水分预算的评估表明,海洋水分的传输和参数化的淡水流量在ERA5吻合良好,而ERA-Interim中存在较大的不一分子。总的来说,从ERA5得出的预算的质量显然要比ERA-Interim的估计值更好。仍然有一些特别敏感的预算数量(例如,降水,蒸发和海洋能源运输)显示出明显的不均匀性,尤其是在1990年代后期,这需要进一步研究,需要在年际可变性和趋势研究中考虑。