行为的连续性要求动物在相互排斥的行为状态之间平稳过渡。控制这些转变的神经原理尚不清楚。秀丽隐杆线虫自发地在两个相反的运动状态(向前和向后运动)之间切换,这种现象被认为反映了中间神经元 AVB 和 AVA 之间的相互抑制。在这里,我们报告说,自发运动及其相应的运动回路不是单独控制的。AVA 和 AVB 既不是功能等效的,也不是严格相互抑制的。AVA 而不是 AVB 保持去极化的膜电位。虽然 AVA 在快速时间尺度上阶段性地抑制了正向促进中间神经元 AVB,但它在较长的时间尺度上保持了对 AVB 的紧张性、突触外兴奋。我们提出,AVA 在不同时间尺度上具有相反极性的紧张性和阶段性活动,充当主神经元,打破了底层正向和反向运动回路之间的对称性。该主神经元模型为由互斥的运动状态组成的持续运动提供了一种简约的解决方案。
受伤是一个不幸的但不可避免的生活事实,导致了强大的稳态3恢复和恢复过程的进化任务。人体的生理4 CAL反应和免疫系统必须与行为协调5,以使受保护的时间发生6,并防止对AF-7捕获的身体部位进一步损害。做出适当的反应需要一个8个内部控制系统,该系统代表伤害的性质和9状态,并指定并扣留行动。我们将11个系统体现的正式不确定性带入了可观察到的12马尔可夫决策过程(POMDP)的框架。根据这种分析,我们讨论了NociCep-13 tive现象,并指出了与损伤15研究相关的矛盾行为,以及从Nor-16个滋补,滋补,病理学,慢性,慢性疼痛状态的过渡倾向。im- 17,这些仿真结果提供了定量的18个帐户,使我们能够勾勒出急需的路线图19,以供未来的理论和实验研究,有关损伤,20种补品疼痛以及向慢性疼痛的过渡。最终,我们21岁寻求针对慢性疼痛的新颖方法。22
1 Fundamental Foundation, Creteil, France, 2 Adult Medical Psychiatry and Medical Psychology Service (Department of Psychiatry and Adult Medical Psychology), Fundamental Resistant Depression Expert (Fundamental Advanced Center of Experture in Resistant Depression, CHU de Toulouse (University Hospital Center), Purpan Center, Tonic Toulouse Neuroimaging Center, University of Toulouse (Toulouse University), Inserm, UPS, Toulouse, France, 3精神病学服务,基本抗抑郁症中心,CIC-1431 INSERM,BUSANçonChu,Burgundy FrancheComté大学,法国4 Inserm U1028 7 U1253, Ibrain, CIC1415, INSERM, CHRU de Tours (Regional University Hospital Center), University of Tours, France, 8 Department of Emergency Psychiatry and Acute CARE, CHU Montpellier, Inserm U1061, Montpellier University, Montpellier, France, 9 Pole of general and university psychiatry, Center Expert Depression Résistant Fundamental, CH Charles Perrens,波尔多,营养和神经生物学实验室(综合
·短暂的(少于1分钟),突然的,广义的肌肉僵硬(可能导致跌落),并恢复迅速 - 暗示了滋补癫痫·的行为停滞 - 指示缺乏癫痫发作·突然的肌肉张力丧失 - 暗示性癫痫发作·简短的“冲击样”非自愿单或多个混蛋 - 暗示了肌阵挛性癫痫发作。
抽象的进化压力适应了昆虫化学效应,以适应其各自的生理需求和生态壁ni的任务。孤独的夜间飞蛾依靠他们的急性嗅觉在晚上找到伴侣。通过大多数未知的机制,以最大的灵敏度和高时间分辨率检测到信息素。虽然昆虫嗅觉受体的逆拓扑和与嗅觉受体共感染者的异构化表明通过气味门控受体 - 离子通道复合物的离子型转导,但矛盾的数据提出了扩增的G-protein-G-protein - 耦合的转导。在这里,我们在特定时间中使用了男性甘达·塞克斯塔·霍克莫斯(Manduca Sexta Hawkmoths)的信息素敏感性的体内尖端录制(REST与活动与活动)。由于嗅觉受体神经元在其信息素响应的三个连续时间窗口中区分了信号参数(phasic; tonic; tonic;晚期,持久),因此分别分析了各自的响应参数。G蛋白的破坏 - 偶联的转导和磷脂酶C的阻滞减少并减慢了霍克莫斯活动阶段的阶段反应成分,而不会影响活动和休息期间的任何其他响应。使用细菌毒素阻止Gαo或持续激活GαS的Gα亚基的使用细菌毒素的持续激活影响了变质的信息素反应,而靶向GαQ和Gα12/13的毒素却无效。 因此,可以通过考虑昼夜节律时间和独特的气味响应成分来解决有关昆虫嗅觉的差异。使用细菌毒素的持续激活影响了变质的信息素反应,而靶向GαQ和Gα12/13的毒素却无效。因此,可以通过考虑昼夜节律时间和独特的气味响应成分来解决有关昆虫嗅觉的差异。与这些数据一致,磷脂酶Cβ4的表达取决于Zeitgeber时间,这表明昼夜节律调节的代谢素信息素转导级联级联反应最大化霍克莫斯活性阶段的信息素转导的敏感性和时间分辨率。
摘要:慢性疼痛是一个主要的医疗保健问题。迫切需要更好的机制理解和新的治疗方法。在大脑中,疼痛与 alpha 和 gamma 频率的神经振荡有关,可以使用经颅交流电刺激 (tACS) 来针对这些振荡。因此,我们在 29 名健康参与者的慢性疼痛实验模型中研究了 tACS 调节疼痛和疼痛相关自主活动的潜力。在 6 个记录会话中,参与者完成了强直热痛模式,并同时在前额叶或躯体感觉皮质上接受 alpha 或 gamma 频率的 tACS 或假 tACS。同时,收集疼痛评级和自主反应。使用目前的设置,tACS 不会调节疼痛或自主反应。贝叶斯统计数据证实在大多数情况下缺乏 tACS 效应。唯一的例外是躯体感觉皮质上的 alpha tACS,但证据尚无定论。综合起来,我们未发现 tACS 对健康人类强直性实验疼痛有显著影响。根据我们目前和以前的发现,进一步的研究可能会应用针对体感 alpha 振荡的改进刺激方案。试验注册:研究方案已在 ClinicalTrials.gov 上预先注册(NCT03805854)。观点:调节脑振荡是一种很有前途的疼痛治疗方法。因此,我们应用经颅交流电刺激 (tACS) 来调节健康参与者的实验疼痛。然而,tACS 不会调节疼痛、自主反应或 EEG 振荡。这些发现有助于塑造未来 tACS 治疗疼痛的研究。
摘要:慢性疼痛是一个主要的医疗保健问题。迫切需要更好的机制理解和新的治疗方法。在大脑中,疼痛与 alpha 和 gamma 频率的神经振荡有关,可以使用经颅交流电刺激 (tACS) 来针对这些振荡。因此,我们在 29 名健康参与者的慢性疼痛实验模型中研究了 tACS 调节疼痛和疼痛相关自主活动的潜力。在 6 个记录会话中,参与者完成了强直热痛范例,并同时在前额叶或躯体感觉皮质上接受 alpha 或 gamma 频率的 tACS 或假 tACS。同时,收集疼痛评级和自主反应。使用目前的设置,tACS 不会调节疼痛或自主反应。贝叶斯统计数据证实在大多数情况下缺乏 tACS 效应。唯一的例外是躯体感觉皮质上的 alpha tACS,但证据尚无定论。综合起来,我们未发现 tACS 对健康人类强直性实验疼痛有显著影响。根据我们目前和以前的发现,进一步的研究可能会应用针对体感 alpha 振荡的改进刺激方案。试验注册:研究方案已在 ClinicalTrials.gov 上预先注册(NCT03805854)。观点:调节脑振荡是一种很有前途的疼痛治疗方法。因此,我们应用经颅交流电刺激 (tACS) 来调节健康参与者的实验性疼痛。然而,tACS 不会调节疼痛、自主反应或 EEG 振荡。这些发现有助于塑造未来 tACS 治疗疼痛的研究。
半导体量子井(QW)中的subband(ISB)转变引起了很多关注,因为它们的潜在应用到了在THZ的中和远红外光谱区域工作的光电设备中。在过去30年中,这为开发量子级联激光器(QCLS)[1]和红外检测器的开发铺平了道路,要么以光导电模式(例如量子井红外光电探测器(qWIPS))[2]或在诸如potovaltaic mode中的Quantum casccade detectors(QCC)[3] [3] [3] [3]。的确,当建立ISB跃迁与微腔中的Photonic模式之间的强相互作用时,被称为ISB极化子出现的准粒子出现了[4] - [7]。这样的ISB极性不仅对基本物理学很有趣,而且还允许实施具有
a 索邦大学、巴黎脑研究所 - ICM、法国国家健康与医学研究院、法国巴黎国家科学研究院 b 索邦大学、UPMC 巴黎第六大学、皮蒂-萨尔佩特里埃医学院、法国巴黎 c AP–HP、皮蒂-萨尔佩特里埃医院集团、德新月大学神经科学、临床神经生理学系、法国巴黎 d AP–HP、皮蒂-萨尔佩特里埃医院集团、德新月大学神经科学、神经内科、神经重症监护室、法国巴黎 e 物理医学与康复系、亨利-加布里埃尔医院、里昂临终关怀院、圣热尼拉瓦尔、法国 f “轨迹”团队、里昂神经科学研究中心、法国国家健康与医学研究院1028,CNRS UMR 5292,里昂大学,里昂第一大学,布龙,法国 g 重症监护病房,Purpan 大学医院,31000 图卢兹,法国 h 图卢兹神经影像中心 (ToNIC 实验室) URM UPS/INSERM 1214,31000 图卢兹,法国