总固定负电荷密度q tot≈1×10 13 cm - 2结合使用,低界面缺陷密度D IT为≈1×10 11 ev -1 cm -2。[4-9]虽然低d表示相当好的化学表面钝化,但高负q tot会导致表面上的电子密度降低,从而导致重要的田间效应对C-SI表面钝化产生了贡献。因此,这种高负q TOT诱导n型Si表面上的反转层,而在P型表面上形成了积累层。n型Si表面上的内部层使其易于使用n型金属触点处的寄生分流作用。[10] There- fore, Al 2 O 3 is predominantly applied to p -type c-Si surfaces, such as the rear surface of passivated emitter and rear cell (PERC) passivated emitter and rear cell solar cells – the current mainstream cell design in high-volume production [11,12] – or the front-side boron-doped p + emitter of n -type c-Si tunneling oxide passivating接触(TopCon)太阳能电池,由于其效率更高,目前变得越来越有吸引力。[11,13–15] Al 2 O 3对于高级细胞设计的效率也非常相关,范围为26%,例如后部发射极(TopCon)细胞[16]或在氧化物相互作用的背部接触(polo-ibc)细胞(Polo-ibc)细胞上的聚晶体中的多层si,但有效的效果(均为有效的)(未经跨度) - 未经有效的态度(未经) - 未经有效的态度 - 不及格(Untercive)。 必需的。与单层相比,厚度只有几个纳米层的多层层为在纳米尺度上修改材料特性的机会。[19]最近,对不同表面钝化方案的直接比较表明,Al 2 O 3 [3]仍然有改进的余地,随着设备的效果的改善,这变得越来越重要。一个有趣的例子是所谓的界面偶极层,目前对其进行了强烈的侵略,尤其是用于在金属 - 氧化物 - 氧化导管现场效应晶体管(MOSFET)中的应用以调整所需的平板电压。[18-20]它们是由两个或三个不同的介电层组成的多层,可以简单地通过改变双层或三层的数量来提供增加平坦电压的可能性。这种平流电压偏移的起源是偶极子,仅在该多层的特定接口处形成,仅具有一个极性。例如,已经报道了SIO 2 /Al 2 O 3堆栈,其中仅在一个极性的SiO 2 /Al 2 O 3接口处形成偶极子,但在Al 2 O 3 /SiO 2界面上却没有相反的极性。
自 2018 年以来(4、5)。该系统名为 IDx-DR,在视网膜照相机 (Topcon NW400) 上运行,并利用 AI 算法分析眼睛图像 (6)。系统的输出是建议,当系统识别出超过轻度 DR 时,将患者转诊给眼科保健专业人员,或建议 12 个月后重新筛查。因此,它是第一款提供自主筛查决策的设备,已获得美国食品药品监督管理局 (FDA) 的市场批准 (5)。出于伦理考虑,这种 AI 辅助设备的一个新颖而独特的功能需要进行严格评估:IDx-DR 有意生成自主建议,这实际上是诊断,无需医生监督,尽管医生通常负责诊断。由于该设备已经投入商业使用,因此迫切需要澄清知情同意的伦理问题。迄今为止,“告诉患者什么”是根据美国和欧盟的法律分析进行讨论的(7-9)。但是,对于用于诊断 DR 的新设备,尚未对“如果 AI 参与诊断,信息处理中应包括哪些信息”这一伦理问题提供具体答案。伦理挑战源于黑盒算法的不透明性、训练数据中的潜在偏差、改善医疗保健与创造利润之间的紧张关系以及出现性能错误时的责任(10)。这些措施旨在改进信息处理并培养患者对 AI 系统的信任。为了缓解这些伦理挑战,有人尝试性地提议对医生进行有关人工智能系统的构建、其训练数据和局限性的教育,并制定超越法律要求的伦理准则 ( 11 )。然而,目前仍不清楚在初级保健环境中使用人工智能系统诊断 DR 的信息过程中应包括哪些具体信息。虽然评论者质疑是否必须从法律角度披露诊断人工智能的参与 ( 7 ),但本文作者认为,忽略这一事实是不道德的,因为这可能构成一种欺骗行为。本文的目的是制定一份清单,以在伦理上保障知情同意过程。我们以 IDx-DR 系统为例,介绍其他可用于诊断 DR 的商业化 AI 辅助工具,例如 2020 年 6 月获得 FDA 批准的 EyeArt(12 – 14)。