饮食中的营养限制(饮食限制)已知会在各种生物中增加寿命。尽管将饮食限制到寿命增加的分子事件尚不清楚,但对酿酒酵母的模型的研究却暗示了几种营养敏感的激酶,包括雷帕霉素复合物1(Torc1),Sch9,Sch9,蛋白质激酶A(PKA)和RIM15。我们最近证明了TORC1通过直接磷酸化激活SCH9。现在,我们证明SCH9也通过直接磷酸化抑制RIM15。用特异性TORC1抑制剂雷帕霉素或咖啡因对酵母细胞的治疗可从TORC1- SCH9介导的抑制中释放RIM15,从而增加了寿命。这种激酶级联反应似乎在进化上是保守的,这表明咖啡因可能会在包括人在内的其他真核生物中延长寿命。
Dhivya R. Sudhan,1 Angel Guerrero-Zotano,2 Helen Won,Paula Gonza´ Lez Ericsson,4 Alberto Servetto,1 Mariela Huerta-Rosario,1 Dan Ye,1 Kyung-Min Lee,1 Luigi formisano,1 Luigi formisano,2 Yan Guo,5 Qi liu kip liu koth tig n n n lies n.迈克尔·J·威克(Michael J.美国纽约州4乳腺癌计划,范德比尔特 - 伊格兰癌症中心,美国纳什维尔5综合癌症中心,新墨西哥大学,阿尔伯克基医学科学中心,美国纳什维尔,美国田纳西州纳什维尔7霍华德·休斯·休斯医学院,德克萨斯大学医学中心。
雷帕霉素靶蛋白复合物 1 (TORC1) 是一种关键的真核激酶,可响应营养物质的可用性调节生长。磷 (P) 是一种必需的常量营养素,磷缺乏会诱导植物生长和防御策略的广泛重编程。该过程涉及磷酸盐饥饿反应 1 (PHR1),它是磷酸盐饥饿反应 (PSR) 的主要调节因子。在本研究中,我们发现了 TORC1 在调节拟南芥 P 饥饿反应中的一种新的非典型作用。我们证明 P 限制可激活 TORC1,从而导致 PHR1 稳定。抑制 TORC1 会增加对 P 饥饿的敏感性,同时会破坏饥饿诱导的转录重编程。此外,我们的研究结果表明,TORC1-PHR1 29 信号轴在重新编程植物免疫信号网络中基因表达方面起着至关重要的作用。这种调节对于磷缺乏条件下与内生真菌 Piriformospora indica 的共生关系至关重要。这些发现强调了 TORC1-PHR1 模块在协调 PSR 中的重要作用,并强调了 TORC1 信号通路在植物中的进化适应性。34
11) Büchel, J., Mingard, C., Takhaveev, V., Reinert, PB, Keller, G., Kloter, T., Huber, SM, McKeague, M. 和 Sturla, SJ, 2023. 胶质母细胞瘤药物替莫唑胺的 O6-甲基鸟嘌呤单核苷酸分辨率基因组图谱。bioRxiv,2023.12.12.571283。正在《核酸研究》中审查。10) Mingard, C., Battey, JN, Takhaveev, V., Blatter, K., Hürlimann, V., Sierro, N., Ivanov, NV 和 Sturla, SJ, 2023. 通过吸烟的各个成分剖析癌症突变特征。化学毒理学研究,36(4),第714-123页。9)Jiang, Y., Mingard, C., Huber, SM, Takhaveev, V., McKeague, M., Kizaki, S., Schneider, M., Ziegler, N., Hurlimann, V., Hoeng, J., Sierro, N., Ivanov, NV 和 Sturla, SJ,2023. 人类基因组中烷基化的量化和映射揭示了突变特征的单核苷酸分辨率前体。ACS Central Science,9(3),第362-372页。 8) Takhaveev, V.、Özsezen, S.、Smith, EN、Zylstra, A.、Chaillet, ML、Chen, H.、Papagiannakis, A.、Milias- Argeitis, A. 和 Heinemann, M., 2023. 生物合成过程的时间分离是造成芽殖酵母细胞周期中代谢振荡的原因。《自然代谢》,5(2),第 294-313 页。7) Ortega, AD#、Takhaveev, V.#、Vedelaar, SR、Long, Y.、Mestre-Farràs, N.、Incarnato, D.、Ersoy, F.、Olsen, LF、Mayer, G. 和 Heinemann, M., 2021. 一种用于报告糖酵解通量的果糖-1,6-双磷酸盐合成 RNA 生物传感器。 Cell Chemical Biology, 28(11), pp.1554-1568. 6) Monteiro, F., Hubmann, G., Takhaveev, V., Vedelaar, SR, Norder, J., Hekelaar, J., Saldida, J., Litsios, A., Wijma, HJ, Schmidt, A. 和 Heinemann, M., 2019. 使用正交合成生物传感器测量单个酵母细胞中的糖酵解通量。分子系统生物学, 15(12), p.e9071。 5) Leupold, S., Hubmann, G., Litsios, A., Meinema, AC, Takhaveev, V., Papagiannakis, A., Niebel, B., Janssens, G., Siegel, D. 和 Heinemann, M., 2019. 酿酒酵母在其复制生命周期中经历不同的代谢阶段。Elife, 8, p.e41046。4) Takhaveev, V. 和 Heinemann, M., 2018. 克隆微生物种群中的代谢异质性。Current opinion in microbiology, 45, pp.30-38。 3) Filer, D., Thompson, MA, Takhaveev, V., Dobson, AJ, Kotronaki, I., Green, JW, Heinemann, M., Tullet, JM 和 Alic, N., 2017. RNA聚合酶III限制TORC1下游的寿命。《自然》,552(7684),第263-267页。2) Suplatov, D., Kirilin, E., Arbatsky, M., Takhaveev, V. 和 Švedas, V., 2014. pocketZebra:一种通过对不同蛋白质家族的生物信息学分析自动选择和分类亚家族特异性结合位点的网络服务器。《核酸研究》,42(W1),第W344-W349页。 1) Suplatov, D., Kirilin, E., Takhaveev, V. 和 Švedas, V., 2014. Zebra:用于对不同蛋白质家族进行生物信息学分析的网络服务器。《生物分子结构与动力学杂志》,32(11),第 1752-1758 页。研究资助
