Yoshua Bengio Mila -Quebec AI研究所,蒙特罗张教大学AI国际治理研究所,张教大学shai Shaiv-Shalev-Shwartz,耶路撒冷吉利安·吉利安·哈德菲尔德大学多伦多,施瓦茨·雷斯曼学院。技术与社会,矢量研究所。不列颠哥伦比亚省杰夫·克莱恩大学,载体学院Tegan Maharaj大学多伦多大学,Schwartz Reisman Inst。技术与社会,矢量研究所。Frank Hutter Ellis Institute t ubingen,弗里伯格·阿利姆·吉纳斯大学卖出牛津·希拉·希拉·希拉·麦克拉斯大学多伦多,施瓦茨·雷斯曼学院。技术与社会,矢量研究所。Qiqi Gao东部中国政治学与法律大学Ashwin Acharya Rand公司David Krueger剑桥大学ANCA DRAGAN DRAGAN UC BERKELEY UC BERKELEY PHILIP UNIOPYS OXFORD FORDER OXFORD StUART Stuart Russell UC Berkeley Daniel Daniel Daniel Kahneman公立与国际事务学院学院,大学Qiqi Gao东部中国政治学与法律大学Ashwin Acharya Rand公司David Krueger剑桥大学ANCA DRAGAN DRAGAN UC BERKELEY UC BERKELEY PHILIP UNIOPYS OXFORD FORDER OXFORD StUART Stuart Russell UC Berkeley Daniel Daniel Daniel Kahneman公立与国际事务学院学院,大学
摘要:硼氢化镁(Mg(BH4)2,本文缩写为MBH)具有优异的重量和体积储氢能力,作为一种有前途的车载储氢介质而受到了极大的关注。尽管MBHα(α)、β(β)和γ(γ)的多晶型物具有不同的性质,但它们的合成均质性可能难以控制,这主要是因为它们的结构复杂性和相似的热力学性质。在这里,我们描述了一种有效的方法,用于在温和条件下(60-190℃,温和真空,2托)从两个最初在氩气和真空下干燥的不同样品开始,在还原氧化石墨烯载体(缩写为MBHg)中获得纯的多晶型MBH纳米材料相。具体来说,我们在 150 - 180 ° C 的温度范围内从 γ 相中选择性地合成热力学稳定的 α 相和亚稳态的 β 相。通过理论热力学和动力学成核模型阐明了相关的潜在相演变机制。所得的 MBHg 复合材料在脱氢和再氢化过程中表现出结构稳定性、抗氧化性和部分可逆形成多种 [BH 4 ] − 物种,使其成为进一步优化储氢应用的有趣候选材料。关键词:硼氢化镁、储氢、相演变、热力学、动力学、还原氧化石墨烯 H
(DC-GDPAU)是一个直流辉光放电等离子体实验,由艾因夏姆斯大学(埃及)物理系设计、建立和运行。该实验的目的是通过将印刷电路板(PCB)暴露于等离子体来研究和改善它的某些特性。该装置由圆柱形放电室组成,其中固定有可移动的平行圆形铜电极(阴极和阳极)。它们之间的距离为12厘米。该等离子体实验在氩气的低压范围(0.15 - 0.70 Torr)下工作,最大直流电源为200 W。在两个电极之间每厘米处测量和计算了等离子体的帕申曲线和电等离子体参数(电流、伏特、功率、电阻)。此外,使用双朗缪尔探针获得了不同径向距离下的电子温度和离子密度。电子温度(KT e )保持稳定在6.58至10.44 eV范围内;而离子密度(ni )范围为0.91×10 10 cm −3 至1.79×10 10 cm −3 。采用数字光学显微镜(800倍)比较等离子体暴露前后对电路布局成形的影响。实验结果表明,等离子体暴露后电导率增加,铜箔表面的粘附力也有所改善。电导率的显著增加与样品表面的位置以及暴露时间直接相关。这表明所获得的结果对于开发用于不同微电子设备(如航天器上的设备)的PCB制造非常重要。
按照之前描述的方法15,在90 nm SiO 2 / Si 基底上新沉积的金膜(30 nm Au 和 1 nm Ti 粘附层)上机械剥离非常大规模的单层 MoS 2 薄片。使用光学相机可以轻松识别剥离的 MoS 2,该相机引导 STM 探针位于单层区域之上以进行成像、光谱和传输研究。在进行第一组 STM 测量之前,将样品在 T = 250 °C 的超高真空条件下(p < 10 −10 Torr)退火数小时以去除水和弱键合分子。初始 STM 研究使用金或钨 STM 探针进行。样品随后在 400 °C 下退火以增加硫空位密度。之后,使用用 50% 饱和 KCl 溶液蚀刻的金 STM 探针进行 STM 和原位传输测量。所有 STM 测量均采用在 100K 下运行的可变温度 STM 系统进行。对于 STS 测量,使用 1Khz 下 20 mV 的调制信号。对于传输测量,使用 3.3 nA 或 330 nA 的顺从电流。在每次传输测量之前,使用 MoS 2 带隙内的稳定电压将金 STM 尖端固定在表面上,以确保尖端和 MoS 2 表面之间的真空间隙减小。然后将 STM 尖端进一步靠近表面以提供稳定的机械和电接触。MoS2 的高机械强度可防止在物理接触期间对尖端和样品造成任何损坏 25
総合研究栋b110“ 2D材料作为非常规环境的保护涂层” Hisato Yamaguchi,Los Alamos国家实验室国立ロス・アラモス国立研究所 国立ロス・アラモス国立研究所 国立ロス・アラモス国立研究所 国立ロス・アラモス国立研究所尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登山口尚登尚登山口尚登尚登山口尚登山口山口山口山口山口山口尚登山口研究员山口山口山口山口山口山口研究员研究员山口山口山口山口山口山口山口山口山口山口山口山口山口山口山口山口原子上的石墨烯层薄层,以通过直接阻断腐蚀反应物(例如氧气)(氧气,而与受保护的材料性能最少交替)来保护表面。原子薄度的高度抗腐蚀性能对于在非常规环境下的应用数量很有吸引力。一个例子是保护粒子加速器的电子源。高量子效率半导体光(由碱元素组成,因此需要10 -10 Torr/10 -8 PA的超高真空才能保持其性能。为了保护这种表面,不仅涂料需要表现出高气势屏障的性能,而且还需要在原子上稀薄,以使光电子有效地逃脱到真空中。另一个例子是对核应用的actinides的保护。系统通常无法在常规涂层的〜微米厚度下忍受杂质包含,因此涂料需要厚度〜Nanomer厚。在本演讲中,我将向上述两个应用程序介绍我们的进度。关于粒子加速器电子源的保护,我们证明了3个数量级增加了3个数量级的碱抗抗氧化物半导体光电座的主动压力增加,并在2019年赢得了R&D 100奖。我们最近开始保护肌动剂,并证明了针对氢腐蚀的寿命增强。
关键字:通量角,蒸发,步骤覆盖,形成膜增长抽象典型蒸发过程始于10e-7 Torr范围。在这种高真空状态下,由于较长的平均自由路径,蒸发过程具有视线特征。设计用于升降机过程的蒸发器采用晶圆圆顶,其球形半径与源位置相匹配。与产生逆行角或底切轮廓的光刻过程相结合,该组合可以使清洁的金属升降机脱离。但是,相同的视线属性促进了金属提升的效果,从而导致了非保形步骤覆盖范围。使用常规的蒸发方法,共形步骤覆盖范围会导致升空难度。在这项工作中,我们将讨论雷神RFC最近开发的技术,该技术与标准升降机蒸发器相比提供了单向步骤覆盖优势。通过使用振荡晶圆运动,蒸发通量可以达到通常因膜增长而遮蔽的特征,从而改善台阶覆盖范围。此方法适用于希望在一个方向上的共形覆盖范围的应用。i ntrodruction金属化是通过大量蒸发的,然后是升降机以去除不需要的金属。电子束蒸发是一个简单有效的金属化过程。由于该过程通常在高真空下开始,因此涂层由于较长的平均自由路径而具有视线属性。不足的逆行角将在光震托上产生薄薄的金属层。产生逆行角度或产生垂直轮廓的双层过程的图像逆转照片过程将导致金属薄膜覆盖范围的不连续性,从而使清洁升降机可行。升空后,多余的金属将变成诸如纵梁,机翼或襟翼之类的缺陷。不幸的是,有益于提升过程的质量对于阶跃覆盖范围并不是最佳的。图1显示了一个金属层在另一个金属层上的阶梯覆盖的示例,该金属层由介电膜分开。
本报告介绍了更新的多伦多绿色标准版本4(TGS V4)2022,该版本提议适用于2022年5月1日开始提交的申请。多伦多绿色标准是该市努力到2030年实现零排放建筑物并达到2050年全市温室气体减少气体目标的关键组成部分。自2010年以来,多伦多绿色标准(TGS)需要用于开发申请,并且根据理事会的指示,大约每四年更新一次。多伦多绿色标准的目标是影响和支持变革,以实现城市更可持续发展的发展。基于越来越可持续性绩效的层次,多伦多绿色标准对城市的气候变化目标和对未来更新的期望提供了清晰的了解。成为可持续性市场领导者的建筑商有资格在该市的多伦多绿色标准开发费用退款计划下获得激励,如果在较高的层次上建造。多伦多绿色标准是市场转型工具的重要作用,可以逐步将发展的发展超出安大略省建筑法规的最低标准,以朝着Transfortto中规定的多伦多零排放目标,以及市议会的2019年宣布气候紧急情况。它还回应了气候变化和弹性行动,以支持理事会中采用的恢复和重建,这些恢复和重建用于恢复和重建多伦多的新报告(TORR报告)。2018年5月,该市推出了多伦多绿色标准版本3,包括基于与温室气体(GHG)排放限制,能源使用强度和热能需求强度有关的绝对性能目标,到2030年的高性能低排放型新结构。员工报告和该市的零排放建筑物框架研究支持了这一变化,这是一个阶梯式方法,以越来越高的能源和温室气体绩效指标,每次多伦多绿色标准更新大型第3部分建筑物(占多伦多预计的新建筑的85%以上)。
10 年级基本信息 CCHSG 的安全保护 CCHSG 致力于支持儿童和青少年发展和学习的各个方面,包括确保儿童安全。我们了解,儿童和青少年在不同的时期和发展阶段会遇到社会、个人和情感障碍,这些障碍会影响他们的学业学习。我们认识到,教育人员在帮助及早发现福利问题和可能存在虐待或忽视的迹象方面发挥着至关重要的作用。安全保护取决于学生是否让教职员工意识到问题。班主任充当“第一反应者”,与牧师团队密切合作,帮助发现问题并为学生提供支持。学校周围张贴海报,帮助学生了解牧师团队和保护团队,帮助他们识别这些教职员工以及如何联系他们。学生计划员还提供建议,并详细说明支持组织和有用的联系方式;学生之声团队与安全保护团队合作,帮助确保内容和建议适当且每年更新。我们理解,有些学生可能会发现报告很困难,尤其是出于各种原因向教职员工传达担忧和顾虑时,因此 CCHSG 在 2021-22 年引入了在线报告系统,让学生能够更自由地报告;可通过学校网站上的“永不接受”链接访问。 安全保障团队指定安全保障负责人 (DSL):K Daniels 女士 kdaniels@cchsg.com 副 DSL:D Frost 女士 dfrost@cchsg.com S. Parrott 博士 sparrott@cchsg.com S Hughes 女士 shughes@cchsg.com M Muldoon 先生 mmuldoon@cchsg.com S Torr 女士 storr@cchs.com K Sharp 女士 ksharp@cchsg.com 幸福支持和早期帮助牧师团队 – 班主任、年级组长和牧师助理 1:1 会议和监控。 WARMS 团队 – 由年级组长推荐任命。还提供即席会议。学校护士和学校辅导员 - 根据年级组长推荐和学生要求进行预约。Rev Greenland - 在学校自愿为教职员工和学生、所有信仰和无信仰者提供牧师服务,提供牧灵和精神支持。会议可通过 Teams 进行,电话交谈或通过电子邮件联系;请通过 hgreenland@cchsg.com 联系 Rev Greenland
简介。在可见光和近红外 (NIR) 范围内具有等离子体特性的金属,例如金、银和铜,可用于光学、电子、传感和其他应用,目前备受关注 [1, 2]。重要的问题是等离子体特性的稳定性,这通常会限制某些金属的使用,因为它们具有化学反应性和可能产生杂散效应。用于等离子体的最常见材料是金,它具有出色的光学性能以及抗氧化性。金在等离子体中的局限性包括其价格高昂以及与微电子技术工艺不兼容。银由于光学损耗低而表现出优异的性能,也得到了广泛应用 [3-7],但通常被认为由于化学稳定性较低而吸引力较小,因此等离子体稳定性也较低 [8]。铜是另一种具有出色光学性能的金属。与金相比,它价格低廉,在可见光和近红外范围内的光学损耗较低。铜在等离子体应用中的优势已被充分发挥,例如在超低损耗铜等离子体波导和生物传感应用中 [9-13]。铜在暴露于环境大气时容易发生相对较快的表面氧化 [14]。在正常条件下,主要产物是 Cu 2 O,CuO 的贡献很小或没有。因此,要将 Cu 膜用于等离子体应用,需要保护结构表面免受氧化引起的降解。可以通过应用 SiO 2 、Al 2 O 3 甚至石墨烯的保护壳/涂层来实现 [10, 15]。在这项工作中,我们测试了一种简单的紫外臭氧处理方法,该方法可在铜膜上快速形成一层薄氧化层。该氧化层有效地保护了铜免受随后与氧化有关的等离子体特性降解的影响,这最近已在 Cu 纳米粒子中得到证实 [16]。我们对形成的氧化层进行了复杂的分析。我们预计,本文提出的结果将作为一种简单有效的方法,用于保留薄铜膜的等离子体特性,以用于非线性光学或传感应用。样品制作。使用 NEE-4000 电子束蒸发系统中的电子束蒸发沉积厚度为 28 nm 的铜膜。在室温下,将顶部覆盖有 2 nm 厚 SiO 2 层的干净硅晶片放置在电子束蒸发器的真空室中,压力为 3×10 7 Torr。作为沉积材料,使用纯度为 99.99% 的铜颗粒。沉积速率约为 2 Å/s。在一个周期内同时制造了 8 个相同的样品。引用的铜膜“厚度”是
带有 CoSi 2 栅极电极的高性能 MOS 隧道阴极 T. Sadoh、Y. Zhang、H. Yasunaga、A. Kenjo、T. Tsurushima 和 M. Miyao 九州大学电子系 6-10-1 Hakozaki,福冈 812-8581,日本 电话:+81-92-642-3952 传真:+81-92-642-3974 电子邮件:sadoh@ed.kyushu-u.ac.jp 1. 简介 高稳定性低电压工作的微阴极是真空微电子学和先进平板显示技术中不可或缺的一部分。到目前为止,已经对具有金属-绝缘体-金属 (MIM) 结构 [1] 和金属氧化物半导体 (MOS) 结构 [2-4] 的隧道阴极进行了研究。Yokoo 等人。报道了具有 Al 或 n + 非晶硅 (a-Si) 栅极的 MOS 隧道阴极的工作特性 [2, 3]。具有 Al 栅极的阴极的发射效率高,但 Al/SiO 2 界面不稳定。另一方面,具有 a-Si 栅极的阴极的 a-Si/SiO 2 界面稳定。然而,a-Si 栅极的电阻相对较高,发射效率较低。因此,迫切需要提高阴极的发射效率和寿命。为了提高它们,需要具有低电阻和稳定电极/氧化物界面的高质量薄栅极电极。CoSi 2 是电阻最低的硅化物之一,具有化学和热稳定性。因此,预计采用 CoSi 2 作为栅极材料将提高阴极的性能。在这项研究中,研究了具有 CoSi 2 栅极的隧道阴极的工作特性,并证明了薄 CoSi 2 膜可以提高发射效率和寿命。这是关于具有 CoSi 2 栅电极的 MOS 隧道阴极的首次报道。2. 实验步骤所用衬底是电阻率为 10 Ωcm 的 n 型 Si。通过湿法氧化生长 160nm 厚的场氧化物。去除具有 0.3mm 2 的圆形栅极图案的氧化物后,通过干氧化在 900 ℃持续 22 分钟生长 10nm 厚的栅极氧化物。为了改善栅极氧化物,将样品在 Ar 中以 1100℃退火 90 分钟。栅极氧化后,使用固体源 MBE 系统在基底温度为 400℃下通过共沉积 Co 和 Si 形成 5-10nm 的 CoSi 2 栅电极,基底压力为 5x10 -11 Torr。最后,通过沉积 Al 形成接触。样品的示意图和能带图分别如图 1 和图 2 所示。测量了二极管电流 Id 和发射电流 Ie 与栅极偏压的关系。3. 结果与讨论图 3 显示了二极管和发射电流密度与电场的典型依赖关系。在 7 MV cm -1 以上的电场下,可以观察到电子的发射。图 4 显示了图 3 中数据的 Fowler-Nordheim 图。发现二极管和发射