Bakhtiar Kasi 博士是一位全面的学术领袖。Kasi 博士是俾路支省信息技术与管理科学大学 (BUITEMS) 计算机科学学院院长,同时也是计算机工程系主任,展现了他对学术卓越和行政职责的承诺。Kasi 博士的专业知识不仅限于学术界,他还拥有宝贵的行业经验,曾担任高级软件工程师,专门为英国客户开展零售系统和销售点项目。Kasi 博士的研究经费证明了他的专业知识。他作为 BUITEMS 建立“空间决策支持系统实验室”的 PI,从 HEC 国家地理信息系统和空间应用中心获得了 7000 万巴基斯坦卢比的资助。他还是另外两个重要项目的联合首席研究员 (Co-PI):与韩国 EDCF 国家计划任务和 HEC 合作的“网络安全与数字取证中心”,以及由 HEC 国家机器人与自动化中心资助的“控制与自动化研究实验室”,分别获得 5250 万美元和 8000 万巴基斯坦卢比的资助。学术会议和专业活动表明了 Kasi 博士对其领域的承诺。他主持了 ICE Cube 2021 会议,并担任 ICE Cube 2018 的 TPC 主席和 ICE Cube 2016 的 TCP 联合主席。Kasi 博士多年来一直是奎达文学节 (QLF) 的核心组织成员,促进该地区的文学和知识活动。作为一名公认的专业人士,Kasi 博士拥有巴基斯坦工程委员会 (PEC) 授予的专业工程师称号,并获得了享有盛誉的 IEEE 高级研究员称号。他是高等教育委员会 (HEC) 批准的导师,并于 2010 年至 2015 年获得富布赖特博士奖。在他的领导下,学院取得了重大的学术里程碑,并获得了备受尊敬的认证,包括 HEC NCRC、NCEAC 和 PEC 的认可。Kasi 博士是洛拉莱大学理事会成员,并在许多法定机构(如 BUITEMS 的财务和规划、辛迪加和学术委员会)中积极为学术界做出贡献。他多元化的技能和对学术成功的奉献精神使他成为该机构和学院的宝贵财富。
NAGPUR的圣弗朗西斯德销售学院电子部 - 印度440006摘要:锂离子(Li-ion)电池已成为便携式系统的主要次要电源。 他们的显着优势在于他们在处置前多次充电的能力,提供了没有有毒元素的清洁能源。 但是,为这些电池充电需要仔细考虑。 快速充电或过度充电会升高电池温度,可能导致爆炸和事故。 存在各种充电方法,但是恒定的电流恒定电压(CC-CV)方法由于能够防止关键的过度充电,因此特别适合锂离子电池。 本文引入了利用89S52微控制器的锂离子电池充电器电路。 充电器采用CC-CV方法来为电池充满电。 关键字:电池充电器,CC-CV充电,锂离子电池。 引言三个主要的化学分子主导了次级电池的景观:镍镉(NICD),镍金属氢化物(NIMH)和锂离子(锂离子)电池。 但是,由于能源容量有限,尺寸较大和环境问题,NICD和NIMH电池在达到某些标准方面的符合某些标准不足。 相比之下,锂离子电池具有高工作电压,令人印象深刻的能量和功率密度,最小的自我放电以及缺乏记忆效应[1]。 这种优势导致锂离子电池成为各种便携式电子产品的首选选择,并且最近在电动和混合电动汽车领域[1-4]。NAGPUR的圣弗朗西斯德销售学院电子部 - 印度440006摘要:锂离子(Li-ion)电池已成为便携式系统的主要次要电源。他们的显着优势在于他们在处置前多次充电的能力,提供了没有有毒元素的清洁能源。但是,为这些电池充电需要仔细考虑。快速充电或过度充电会升高电池温度,可能导致爆炸和事故。存在各种充电方法,但是恒定的电流恒定电压(CC-CV)方法由于能够防止关键的过度充电,因此特别适合锂离子电池。本文引入了利用89S52微控制器的锂离子电池充电器电路。充电器采用CC-CV方法来为电池充满电。关键字:电池充电器,CC-CV充电,锂离子电池。引言三个主要的化学分子主导了次级电池的景观:镍镉(NICD),镍金属氢化物(NIMH)和锂离子(锂离子)电池。但是,由于能源容量有限,尺寸较大和环境问题,NICD和NIMH电池在达到某些标准方面的符合某些标准不足。相比之下,锂离子电池具有高工作电压,令人印象深刻的能量和功率密度,最小的自我放电以及缺乏记忆效应[1]。这种优势导致锂离子电池成为各种便携式电子产品的首选选择,并且最近在电动和混合电动汽车领域[1-4]。然而,充电锂离子电池需要一种独特的方法,以确保从未破坏当前,电压,温度,功率和能量的规定限制。充电期间的连续监视对于维护电压和当前水平的安全边界至关重要。li-ion电池充电方法已经提出了许多电池充电方法,包括恒定滴流(CTC),恒定电流(CC),恒定电压(CV)和恒定电流恒定恒定电压(CC-CV)策略。鉴于锂离子电池的寿命可能会受到收费和过度充电的显着影响,因此为这些电池充电的常规选择是CC-CV方法[2]。另一种广泛使用的充电技术是TPC充电方法。恒定电流电压充电方法CC-CV方法是电池化学的最普遍,广泛采用的方法,尤其是那些具有上电压极限的方法,例如锂离子电池。此方法在充电逻辑中涉及两个不同的阶段:恒定电流的初始阶段,然后是随后的恒定电压阶段。
人机交互 (HCI) 科学技术在过去几年中取得了巨大进步。这推动了两种相反的趋势。一种不同的趋势是组织针对重点主题的单独会议,例如“交互设计和以用户为中心的设计等”,而这些主题以前都属于 HCI 的范畴。另一种趋同的趋势是在 HCI 会议中吸收新的领域,例如“用文字计算”、“亲社会代理开发”和“基于注意力的应用”等。IHCI-2021 是少数专注于上述趋势交叉点上的“智能”和“人机交互”问题的会议之一。很荣幸能够介绍第 13 届智能人机交互国际会议 (IHCI-2021) 的论文集。该会议由肯特州立大学于 2021 年 12 月 20 日至 22 日在美国俄亥俄州肯特市肯特州立大学设计创新中心举办。IHCI 是人机交互领域的年度国际会议,我们在会上探讨机器智能与人类智能之间复杂交互中出现的研究挑战。这是第十三次以“超越物理极限的智能交互”为主题的活动,有 12 个特别专题与会议主题以及 IHCI 领域的一般主题相关。在提交的 138 篇论文中,66 篇论文被程序委员会接受进行口头陈述和发表,这是基于至少 3 位专家审阅者的建议。会议记录分为九个部分,与会议的每个主题相对应。第 13 届 IHCI 会议包括五位主旨发言人和十场受邀演讲,二十九位强大的专家会议主席和六位论坛组织者曾在工业界和学术界工作,吸引了 200 多名参与者,成为全球(超过 22 个国家)最重要的学术研究人员、研究生、顶级研究智库和行业技术开发人员的聚会。因此,我们确实相信,对参与者来说,最大的好处是实现他们在 HCI 领域的目标。这最终将带来更大的商业成功,最终有益于社会。此外,我们应该向所有向 IHCI-2021 提交作品的作者表示热烈的感谢。在提交、审查和编辑阶段,Easy chair 会议系统非常有用。2021 年 12 月我们感谢技术计划委员会 (TPC) 和当地组织委员会为确保本次会议的成功所做的不懈努力。最后,我们要感谢我们的演讲者、作者和参与者为使 IHCI-2021 成为一次令人振奋且富有成效的会议所做的贡献。如果没有他们在未来持续的支持,这个 IHCI 会议系列就无法实现年度里程碑。
前言 近几年来,人机交互 (HCI) 科学技术取得了巨大进步。这推动了两种相反的趋势。一种不同的趋势是组织单独的会议,讨论诸如“交互设计和以用户为中心的设计等”等重点主题,而这些主题以前都属于 HCI 范畴。另一种趋同的趋势是在 HCI 会议中吸收新的领域,例如“用文字计算”、“亲社会代理开发”和“基于注意力的应用”等。IHCI-2021 是少数专注于上述趋势交叉点上的“智能”和“人机交互”问题的会议之一。很荣幸能够介绍第 13 届智能人机交互国际会议 (IHCI-2021) 的论文集。该会议由肯特州立大学于 2021 年 12 月 20 日至 22 日在美国俄亥俄州肯特市肯特州立大学设计创新中心举办。IHCI 是人机交互领域的年度国际会议,我们在会上探讨机器智能与人类智能之间复杂交互中出现的研究挑战。这是第十三次以“超越物理极限的智能交互”为主题的活动,有 12 个特别专题,与会议主题以及 IHCI 领域的一般主题有关。在提交的 138 篇论文中,66 篇论文被程序委员会接受进行口头陈述和出版,该委员会基于至少 3 位专家审稿人的建议。论文集分为九个部分,与会议的每个专题相对应。第 13 届 IHCI 会议包括五位主旨演讲人和十位受邀演讲人,以及 29 位强大的专家会议主席和 6 位论坛组织者,他们曾在行业和学术界工作,吸引了 200 多名参与者,成为全球(超过 22 个国家)最重要的学术研究人员、研究生、顶级研究智库和行业技术开发人员的聚会。因此,我们确实相信,参与者最大的好处是实现他们在 HCI 领域的目标。这最终将带来更大的商业成功,最终对社会有益。此外,我们应该向所有向 IHCI-2021 提交作品的作者表示热烈的感谢。在提交、审查和编辑阶段,Easy chair 会议系统非常有用。我们感谢技术计划委员会 (TPC) 和当地组织委员会为确保本次会议的成功所做的不懈努力。最后,我们要感谢我们的演讲者、作者和参与者为使 IHCI-2021 成为一个令人振奋和富有成效的会议所做的贡献。如果没有他们未来的持续支持,IHCI 会议系列就无法实现年度里程碑。2021 年 12 月
通过石墨烯进行远程外延相互作用的实验证据 Celesta S. Chang 1,2,† 、Ki Seok Kim 1,2,† 、Bo-In Park 1,2,† 、Joonghoon Choi 3,4,† 、Hyunseok Kim 1 、Junsek Jeong 1 、Matthew Barone 5 、Nicholas Parker 5 、Sangho Lee 1 、Kuangye Lu 1 、Junmin Suh 1 、Jekyung Kim 1 、Doyoon Lee 1 、Ne Myo Han 1 、Mingi Moon 6 、Yun Seog Lee 6 、Dong-Hwan Kim 7,8 、Darrell G. Schlom 5,*、Young Joon Hong 3,4,*、和 Jeehwan Kim 1,2,6,9,* 1 麻省理工学院机械工程系,美国马萨诸塞州剑桥 02139,2 麻省理工学院电子研究实验室,美国马萨诸塞州剑桥 02139 3 世宗大学纳米技术与先进材料工程系,首尔 05006,韩国 4 GRI-TPC 国际研究中心和世宗大学纳米技术与先进材料工程系,首尔 05006,韩国 5 康奈尔大学材料科学与工程系,纽约州伊萨卡,14850,美国 6 首尔国立大学机械工程系,首尔,韩国 7 成均馆大学(SKKU)化学工程学院,水原 16419,韩国 8 成均馆大学(SKKU)生物医学融合研究所(BICS),水原 16419,韩国 9 麻省理工学院材料科学与工程系,马萨诸塞州剑桥 02139,美国 † 这些作者的贡献相同。 * 通讯至 jeehwan@mit.edu、yjhong@sejong.ac.kr、schlom@cornell.edu ORCID ID:Celesta S. Chang (0000-0001-7623-950X)、Ki Seok Kim (0000-0002-7958-4058)、Bo-In Park (0000-0002-9084-3516)、崔仲勋 (0000-0002-2810-2784)、郑俊石 (0000-0003-2450-0248)、金贤锡 (0000-0003-3091-8413)、李尚浩(0000-0003-4164-1827),路匡业(0000-0002-2992-5723)、Jun Min Suh(0000-0001-8506-0739)、Do Yoon Lee(0000-0003-4355- 8146)、Ne Myo Han(0000-0001-9389-7141)、Yun Seog Lee(0000-0002-2289-109X)、Dong-Hwan Kim(0000-0002-2753-0955)、Darrell Schlom(0000-0003-2493-6113)、Young Joon Hong(0000- 0002-1831-8004)、Jeehwan Kim(0000-0002-1547-0967)摘要远程外延的概念利用衬底的衰减电位二维范德华层覆盖在基底表面,这使得吸附原子能够进行远程相互作用,从而遵循基底的原子排列。然而,必须仔细定义生长模式,因为二维材料中的缺陷可以允许从基底直接外延,这可能会进一步诱导横向过度生长形成外延层。在这里,我们展示了一种只能在远程外延中观察到的独特趋势,与其他基于二维的外延方法不同。我们在图案化石墨烯上生长 BaTiO 3,以显示一个反例,其中基于针孔的外延无法形成连续的外延层。通过观察在没有单个针孔的石墨烯上生长的纳米级成核位点,我们在原子尺度上直观地证实了远程相互作用。从宏观上看,GaN微晶阵列的密度变化取决于衬底的离子性和石墨烯层数,这也证实了远程外延机制。
规划: • 为所有航线(ONAV 1-5、MAX)携带带状图和未风向的喷气日志参加每次飞行活动。将它们放在飞机上随时可用,以防天气需要在飞行中更改航线。我们鼓励您为计划的航线携带风向修正的喷气日志。• 如果您计划执行备选航线(西行 1/2、东行 1/2),请查看 SDO 的航线带状图并在 JMPS 实验室中制作喷气日志。• 计划 VFR 和 IFR 出发,但除非天气需要 IFR,否则请预期使用 VFR 程序到达您的航线。• 确保您的强制性 ICP 在您的 IP 喷气日志和您的喷气日志上。• 对照 ONAV 规划指南验证喷气日志和 ONAV 带状图上的所有航线高度。• 对于路线简报,使用钢笔或铅笔作为“指针”。这是标准的军事简报专业精神,并允许您的 IP 在简报时查看带状图,而无需用手挡路。遵循简报中“行为”页面上的路线描述格式,并强调危险和高度变化。要简要介绍转弯点描述,请使用 VT-10 培训资源页面或 iPad 上的 Box 应用程序中的“ONAV”选项卡下的“转弯点图像”文件。但是,请从带状图上简要介绍您的路线,而不是您的 IPAD(iPad 上的 VFR 分区和 TPC 没有时间戳、信息框或 CHUM/VOD 更新)!• 不要计划穿过禁区或塔楼空域的路线条目。如果您正在执行 ONAV 2 或 MAX,请规划您的航线入口/出口,以避免与 Pelican 和 Area 2F 工作区域发生冲突。• 对于 Joker 燃料,您在每个点的 MCF 将在整个活动期间充当您的 Joker 燃料。这些旨在考虑您的路线以及您计划完成的任何其他计划的训练目标(特技飞行、PEL、进近)。您不会像在 FAM 阶段那样拥有单一的 Joker 燃料。地面操作: • 使用预设的 ONAV 航线飞行计划为您的计划航线设置 GPS。请务必选择 DIRECT TO 您的第一个所需航点,因为 GPS 很可能会循环到 KNPA,因为那是您当前所在的位置。将显示设置为“Super Nav 5”并调用“Programmed and Set”。根据具体出发机场的情况设置 RMU。飞行中: • 如果以目视飞行规则起飞,塔台不会将您切换至出发模式,直到您起飞并确定您已远离交通,因此请勿出于习惯自动切换至出发模式并滑行至跑道。• HATT 简报 - 开始目视导航至 PT A。• 取消建议 - 一旦清除 C 级(高于 4,200 英尺或超出 10 海里)并能够继续 VMC。如果您的路线或高度附近有云,请向您的 IP 提出建议,以帮助避免这些意外障碍。• 如果起飞 IFR 并遇到实际 IMC 条件,请注意云底。了解云底将让您了解在取消 IFR 进近之前需要下降多少,这通常在 TRADR 之前完成。
Luca Selmi 简历 姓名:Luca Selmi 职称:电子学教授 院系:DIEF,恩佐法拉利工业部 院校:摩德纳和雷焦艾米利亚大学 Via Vivarelli 10, 41058,摩德纳,意大利 专业领域:微电子和纳米电子 Luca Selmi 于 1992 年获得博洛尼亚大学电子工程博士学位。2000 年,他成为意大利乌迪内大学电子学正教授。1989 年至 1990 年,他担任加利福尼亚州圣罗莎惠普微波技术部门的访问科学家,研究高频设备的特性以及采用集成变压器和砷化镓 T 线圈的集成电路设计。 1995-1996 年,他是 IEEE 国际电子设备会议 (IEDM)“建模和仿真”技术小组委员会成员。2001-2002 年,他是 IEEE 国际电子设备会议 (IEDM)“电路和互连可靠性”技术小组委员会成员。2008-2009 年,他是 IEEE 国际电子设备会议 (IEDM)“CMOS 器件技术”技术小组委员会成员。2014 年至 2018 年,他一直担任 IEEE VLSI 研讨会的 TPC 成员和出版主席。2001 年,他是意大利乌迪内举行的 INFOS 会议的联合组织者。2003 年,他是意大利乌迪内“硅片终极集成”研讨会 (ULIS) 的联合组织者。2008 年,他担任同一会议的总主席。 2011 年,他担任 IEEE 国际微电子测试结构会议 (荷兰阿姆斯特丹) 的技术项目主席。2014 年,他将担任同一会议的总主席。2013 年,他担任 GE Electronics 会议 (意大利乌迪内) 的总主席。2015 年,他担任 INFOS (半导体绝缘膜) 会议的总主席。2004 年和 2005 年,他是半导体接口专家会议 (SISC) 的技术项目委员会成员,自 2004 年起担任半导体绝缘膜会议 (INFOS) 的成员。自 2011 年起,他担任 INFOS 会议指导委员会成员。2004 年,他一直担任 IRPS 会议的技术项目委员会成员。2005 年至 2008 年,他一直是欧洲固态研究会议 (ESSDERC)“特性和可靠性”小组委员会成员。 2006 年,他担任“特性和可靠性”小组委员会主席。2009 年至 2012 年,他担任欧洲固态研究会议 (ESSDERC)“存储设备”小组委员会成员。自 2017 年起,他担任意大利纳米电子大学联盟 (IU.net) 主任,该联盟负责协调目前 12 个大学团体在 CMOS 和 CMOS 纳米电子技术和电路领域的运作。2017 年 12 月,他转入目前的隶属机构“恩佐法拉利”工业部,摩德纳和雷焦艾米利亚大学。Luca Selmi 曾担任多个欧盟国际研究项目(ULIS - 4FP、NESTOR - 5FP、SINANO - 6FP、EUROSOI - 6FP、PULLNANO - 6FP、STEEPER - FP7、GRAND - FP7、NANOSIL、FP7、NANOFUNCTION - FP7、GRADE - FP7)和意大利大学教育与研究部 MIUR(PRIN 1998、2000、2002、2004、2006、2008、2015、2017)和 FIRB 项目)研究单位的技术和协调职责。他发起并监督了与全球主要半导体行业的许多研究合同,包括飞利浦、
Yacine Ghamri-Doudane目前是法国La Rochelle大学的完整教授,以及其信息学实验室,图像和互动实验室主任,L3i(每年约有120名成员 + 〜30个实习生)。自2019年1月以来,他还曾在爱尔兰沃特福德理工学院沃尔顿信息与通信系统科学研究所担任兼职教授职位。在此之前,亚辛(Yacine)在法国伊夫里(Eniie)的Ensiie(2004-2013)担任助理/副教授职位,位于法国埃夫里(Evry),是法国埃弗里(Evry),是法国马纳 - 瓦尔(Marne-La-Vallée)的Gaspard-Monge计算机科学实验室(LIGM - UMR 8049)的成员。从2011年2月到2012年7月,他定期访问爱尔兰都柏林都柏林大学学院的表演工程实验室。Yacine于1998年获得了美国国家信息学研究所(INI)的计算机科学工程学位(M.ENG),硕士学位。来自法国里昂的美国国家应用科学研究所(INSA)的信号,图像和语音处理学位,1999年,博士学位。 2003年,来自法国巴黎6的Pierre&Marie Curie大学的计算机网络学位,以及2010年在巴黎大学的计算机科学研究(HDR)的习惯,2010年。他当前的研究兴趣在于无线网络和移动计算领域,当前重点是与物联网(IoT),连接和自动驾驶汽车,5G及以后以及数字信任相关的主题。自1999年以来,他参加或仍在他的利益领域参加了几个国家和欧洲范围的研究项目。Yacine拥有三(3)项国际专利,他撰写或合着了八(8)章,57篇经过同行评审的国际期刊文章,约有191份同行评审的完整会议和研讨会论文。其中有四个区域研究项目(正在进行的三个),六个国家范围内的研究项目(正在进行的三个),15个欧洲或国际范围内的研究项目(正在进行的两个)以及三项欧盟成本行动。他还与奥兰治,诺基亚,雷诺,Oodrive,Soft@Home,Panga和Inkan.link等公司持有了几家工业资金。作为与计算机网络研究社区相关的专业活动的一部分,Yacine还担任IEEE Smart Cities技术社区的主席2.0会议和会议委员会。从2010年1月至2013年12月,他担任IEEE通信协会(COMSOC)信息基础设施与网络技术委员会(TCIIN - 以前的TCII)主席,并从2012年1月至2015年1月至2015年1月。他也是2014年至2017年的IEEE Smart Cities倡议指导委员会以及2022年以来的成员,他被选为GlobeCom/ICC技术内容(GITC)常务委员会的一般会员,这是IEEE Communications Society(Comsoc)的两个旗舰会议(Comsoc)。自2019年以来,他一直是IEEE的高级成员(2004年的成员,2002年的学生成员)。他是IEEE TVT(正在进行的),Elsevier Jnca,Elsevier Comnet,Springer Aot期刊,Wiley WCMC,IEEE Commag的客座编辑,IEEE IOT期刊,IEEE IOT期刊,Springer/EurAsip WCN期刊的访客(IEEE)杂志(Ornife of The Exderief)(Offerevier)杂志(Offerevier)杂志(Offerevier/KICS ICT)(ORDEREDERIED) IEEE COMSOC临时和传感器网络技术委员会(AHSN TC)的新闻通讯。Among other conference involvements, he acted or is still currently acting as the TPC Chair of IEEE LatinCom 2022, IEEE MeditCom 2021, IEEE/IFIP IM 2021, and IEEE CCNC 2015, Symposium co-Chair in IEEE ICC 2009, 2010, 2012, 2018 and 2021 as well as IEEE GLOBECOM 2012 and 2015, Workshop co-Chair for IEEE GlobeCom 2023,IEEE CloudNet 2024和IEEE NOMS 2025,最后在IEEE CCNC 2023和2024中跟踪联合主席,以及IEEE Sensors 2022和2023。