4 IBM T. J. Watson Research Center,1101 Kitchawan Rd,Yorktown Heights,NY 10598简介需要快速管理大量数据,有效地促进了对数据中心中高速数据传输的需求。 生成AI的出现进一步推动了对高速数据传输的需求,因此数据中心的近四分之三居住在数据中心中[1]。 Traffim的增长加速了对下一代网络设备的需求,以支持更高的端口密度。 但是,用于数据传输的传统铜电缆受到长距离信号降低的限制。 这又推动了大规模部署高速光学元件的要求,以连接网络设备的各个层。 今天,数据中心在很大程度上依赖于光学,但不用于短到中间(<2m)的互连。 传统的可插入光学带宽的增加速度要比数据中心的速度慢得多,并且应用要求和常规可插入光学的功能之间的差距不断增加,这一趋势是无法实现的。 共包装光学(CPO)是一种破坏性的方法,可通过通过高级包装和电子设备和光子学的优化来大大缩短电连接长度,从而提高互连带宽密度和能量效率。 计算性能的进步从摩尔的定律缩放中有益,并且在过去20年中的性能高达60000倍,如图1所示。 但是,在同一时间范围内,I/O带宽仅增加了30倍。4 IBM T. J. Watson Research Center,1101 Kitchawan Rd,Yorktown Heights,NY 10598简介需要快速管理大量数据,有效地促进了对数据中心中高速数据传输的需求。生成AI的出现进一步推动了对高速数据传输的需求,因此数据中心的近四分之三居住在数据中心中[1]。Traffim的增长加速了对下一代网络设备的需求,以支持更高的端口密度。但是,用于数据传输的传统铜电缆受到长距离信号降低的限制。这又推动了大规模部署高速光学元件的要求,以连接网络设备的各个层。今天,数据中心在很大程度上依赖于光学,但不用于短到中间(<2m)的互连。传统的可插入光学带宽的增加速度要比数据中心的速度慢得多,并且应用要求和常规可插入光学的功能之间的差距不断增加,这一趋势是无法实现的。共包装光学(CPO)是一种破坏性的方法,可通过通过高级包装和电子设备和光子学的优化来大大缩短电连接长度,从而提高互连带宽密度和能量效率。计算性能的进步从摩尔的定律缩放中有益,并且在过去20年中的性能高达60000倍,如图1所示。但是,在同一时间范围内,I/O带宽仅增加了30倍。电信号速率的增加需要显着前进才能使信号进入/退出,此外,根据应用程序,根据应用程序,还有一个伴随的挑战,可以进一步将电信号移至路由器或开关的前面板。为了解决这一挑战,该行业将通过共包装光引擎和主要
摘要 - 条件隐私保护和信息词在车辆网络中的安全性方面是主要研究问题。随着5G时代的到来,网络服务的下载速度和消息传输速度的下载速度显着提高。因此,用户在车辆网络中交换的内容不仅限于传播信息,而且高速行驶的车辆可以共享各种内容。但是,由于车辆的快速移动特征,共享内容可靠和有效仍然具有挑战性。为了解决此问题,我们在5G支持的车辆网络中提出了一个可靠且有效的内容共享方案。带有内容下载请求的车辆迅速过滤相邻车辆,以选择能力且合适的代理车辆,并要求它们提供内容服务。因此,可以实现获得良好的命中率,节省网络流通量,减少时间延迟以及在高峰时段缓解拥塞的目的。安全分析表明所提出的计划满足车辆网络的安全要求。我们的加密操作基于椭圆曲线,最后,与其他相关方案相比,提出的方案也表现出有利的性能。
摘要:目前,在欧洲的几条铁路网络中,使用传统的直流电气化系统,既无法增加交通量,也无法使机车以标称功率运行。轨道旁储能系统 (TESS) 可以作为新建变电站的替代解决方案。TESS 限制接触线电压下降并平滑高峰交通期间吸收的功率。因此,可以在限制成本和环境影响的同时提高电力系统的效率。本文提出了一种基于全 SiC 隔离 DC/DC 转换器的 TESS 新拓扑,该转换器与锂离子电池和电流隔离相结合,为运行安全提供了重大优势。发生故障时,转换器的输入和输出端子将电气分离,并且接触线电压绝不会直接施加到电池上。此外,使用 SiC MOSFET 可以获得具有高开关频率的出色效率。本文第一部分介绍了基本 TESS 模块的主要特性,第二部分针对 1.5 kV 直流线路的典型情况提出了一种尺寸确定方法,该方法表明了使用 TESS 增强电源的局限性。最后,介绍了基本模块原型的实验结果。
由于计算机系统的智能化和自主性增强,人类操作员的角色正在发生变化。人类将在更宏观的层面上或仅在特定情况下与系统交互。这涉及学习新实践和改变习惯性的思维和行为方式,包括重新考虑人类与自主系统之间的自主性。本文介绍了未来城市无人机交通自主管理系统的设计案例,我们将其称为布鲁塞尔的计算机。我们为人类与自主系统协作而设计的方法建立在基于场景的设计和计算机模拟促进的认知工作分析的基础上。我们使用一种称为联合控制框架的时间方法,在标记为认知控制中的自主性级别的抽象层次中描述人类和自动化工作。我们使用分数符号来分析跨越抽象层次结构的时间发展模式,并讨论交通管理中人机通信的影响。我们讨论了较低级别的自主性如何阻止较高级别的自主性,反之亦然。我们还讨论了在每分钟的操作工作中自主性的时间性。我们的结论是,与自主系统相关的人类自主性基于自动化技术机会与人类参与者认为有意义的价值观之间的基本权衡。
摘要:安全研究已发现注意力是空中交通管制中事件和事故的反复原因。然而,人们对导致空中交通管制绩效下降的确切注意力状态知之甚少。因此,我们调查了 150 名法国途中空中交通管制员,了解文献中七种注意力下降状态的成因及其对感知合作、安全和绩效的影响:与任务相关和与任务无关的走神、精神超负荷、注意力不集中和失明、注意力熵和固执。我们的研究结果表明,与任务相关和与任务无关的走神最为普遍,但对感知安全的影响最小。相反,注意力不集中和注意力熵报告较少,但被认为是一个重大的安全隐患,而注意力不集中会影响合作。大多数状态在工作量水平上都与文献一致。然而,没有其他因素(如轮班工作)被确定为这些状态的原因。总体而言,这些发现表明,“注意力”对于 ATC 来说不是一个足够具体的主题,因为注意力问题可能发生在各种情况下,并产生不同的影响。就安全而言,注意力盲视应该是进一步研究的主要目标。神经人体工程学尤其有助于制定动态对策来减轻其影响。
在康复环境中,获得性脑损伤或疾病后是否适合驾驶是一个常见的问题。这项研究的目的是将年龄匹配的常模与用来预测驾驶适应性的患者认知测试结果进行比较。第二个目的是分析道路评估对获得性脑损伤后恢复驾驶的最终决策的贡献。将四个交通医学部门(n = 333)的回顾性认知测试结果与瑞典健康常模人群(n = 410)的结果进行了比较。根据交通医学团队对适合或不适合驾驶的最终决策,将患者分为两类。在所有年龄组的所有认知测试中,常模组的结果明显优于被认为不适合驾驶和适合驾驶的患者。对患者组进行的二元回归分析显示,适合驾驶/不适合驾驶的解释值为 88%,其中包括北欧中风驾驶员筛查评估总分、有用视野总分和道路评估的最终结果。本研究的结果说明了使用多种测试、方法和背景对于最终决定驾驶适应性的重要性。
摘要 - CAMERA传感器已被广泛用于感知周围环境的车辆,了解交通状况,然后有助于避免交通事故。由于大多数传感器受视力线的限制,因此可以通过边缘服务器上传和共享通过单个车辆收集的感知数据。为了降低带宽,存储和处理成本,我们提出了一个边缘辅助相机选择系统,该系统仅选择必要的相机图像上传到服务器。选择基于相机元数据,该摄像机元数据描述了用GPS位置,方向和视图范围表示的相机的覆盖范围。与现有工作不同,我们的基于元数据的方法可以通过利用激光雷达传感器来检测和定位相机的遮挡,然后精确而快速地计算真实的相机覆盖范围并确定覆盖范围的重叠。基于相机元数据,我们研究了两个相机选择问题,最大覆盖问题和最小选择问题,并使用有效的算法来解决它们。此外,我们提出了基于相似性的冗余抑制技术,以进一步减少带宽消耗,这由于车辆的运动而变得显着。广泛的评估表明,根据应用要求,提出的算法可以有效地选择相机以最大程度地覆盖或最大程度地减少带宽消耗。
DMS的不间断和无缝访问以及许多相关和因应用程序也将非常重要。使用GP,电子商务,物联网,学习管理,分析,人工智能和流动性等越来越多的利基技术解决方案,必须在DMS生态系统中使用这些技术来实现各种地理位置。例如从房屋的舒适度到嘈杂的情况。因此,必须与这些技术/应用程序无缝集成,并且将不间断地访问它们。