•噪音和振动 - 该项目包括悉尼火车在铁路走廊内进行的典型维护和改进活动的作品。虽然这些作品将在大约五年的时间内进行,但这些活动中的大多数仅出于安全原因而发生在铁路财产期间(大约在三个周末的财产中每年约六天)。使用建筑工厂和机械的使用显然是相邻住宅和非住宅接收器的。一些距离作品最近的住宅接收器会受到高度噪音,并且在夜间工作中可能会遇到睡眠障碍。但是,仅在总施工时间的相对较短的时间内需要嘈杂的作品(即每年三个周末左右)。在此参考中提出了缓解措施,以最大程度地减少这些影响。
英国铁路面临着如何更换其区域性 DMU 车队的迫在眉睫的挑战,其中一些列车已使用约 40 年,使用寿命已到,其余大部分列车也很快接近使用寿命。然而,西门子交通公司相信——其分析也经过独立验证——这些列车可以用电池电力驱动的短段不连续电气化列车取代,35 年内可节省 35 亿英镑的运营、能源和资本成本,经验证可节省 1200 万吨二氧化碳排放量,并且在同等财务价值下还可显著减少氮氧化物和颗粒物排放。具体来说,第一列 150 级列车于 1984 年投入使用,最后一批 BR 列车——166 级列车于 1990 年代初加入车队。此外,20 世纪 90 年代末期,大量早期私有化柴油动车组建成,这些动车组也已到了难以证明进一步投资合理性的地步。柴油车辆数量
摘要 — 侵入式皮质脑机接口 (BMI) 可以显著改善运动障碍患者的生活质量。尽管如此,外部安装的基座存在感染风险,因此需要完全植入的系统。然而,这样的系统必须满足严格的延迟和能量限制,同时提供可靠的解码性能。虽然循环脉冲神经网络 (RSNN) 非常适合在神经形态硬件上进行超低功耗、低延迟处理,但它们是否满足上述要求尚不清楚。为了解决这个问题,我们训练了 RSNN 来解码两只猕猴的皮质脉冲序列 (CST) 中的手指速度。首先,我们发现大型 RSNN 模型在解码精度方面优于现有的前馈脉冲神经网络 (SNN) 和人工神经网络 (ANN)。接下来,我们开发了一个微型 RSNN,它具有较小的内存占用、较低的发放率和稀疏连接。尽管计算要求降低了,但生成的模型的性能明显优于现有的 SNN 和 ANN 解码器。因此,我们的结果表明,RSNN 在资源受限的情况下提供了具有竞争力的 CST 解码性能,并且是完全植入式超低功耗 BMI 的有希望的候选者,具有彻底改变患者护理的潜力。索引术语 — 脉冲神经网络、脑机接口、皮质脉冲序列解码、神经形态硬件
2025 年 1 月 28 日——智能和可持续交通领域的全球领导者阿尔斯通赢得了一份价值 1.44 亿欧元(约合 1285 亿印度卢比)的合同,为 17 辆 Vande Bharat 卧铺列车(408 辆车)提供 Mitrac 牵引部件和其他电气设备。这些系统将供应给位于钦奈的印度铁路综合客车厂 (ICF)。该合同还包括在保修期结束后的五年内,在各个铁路站场对牵引和主要电气设备进行预防性和纠正性维护以及支持服务。这些设备将安装在 Vande Bharat 平台的 24 辆车卧铺列车上,设计最高时速为 180 公里/小时,服务速度为 160 公里/小时。鉴于此次合同的中标,阿尔斯通印度公司董事总经理 Olivier Loison 表示:“Vande Bharat 列车代表了印度轨道交通的现代面貌,我们很自豪能够再次与印度铁路公司合作,进一步实现他们的愿景。阿尔斯通拥有铁路行业最广泛的零部件组合,这些产品组合是数十年来在全球范围内提供铁路解决方案的经验的结晶。我们在印度拥有强大的制造和工程实力,这将使我们能够提供世界一流的产品并优化维护。”
高速磁浮列车通过隧道时,隧道内会产生突变的压力,对乘客的舒适度和设备的使用寿命产生不利影响,同时会向外辐射强烈的微压波,造成隧道出口的环境噪声。本文采用基于剪应力输送k - ω湍流模型的非定常可压缩雷诺平均Navier-Stokes方程,研究在隧道壁上设置吸盘对压力波的抑制效果,并比较不同吸盘速度下的实验结果。结果表明:开启吸盘后,在吸槽附近会产生一个低压区,可以减弱初始压缩波和列车前方的高压区;瞬时列车表面压力、隧道表面压力和微压波与吸盘速度有明显的关系。例如,与无吸力情况相比,在吸力速度为50 m/s的情况下,列车表面测点H1(列车车头处)处第一次和第二次压力突变幅度分别减小10.44%和30.61%;隧道表面测点T17(隧道中部)处的压力突变幅度减小14%以上;测点M2(隧道外,距隧道出口20 m处)处的微压波幅度减小12.44%。这表明采用吸力技术可以减轻隧道气动效应。不同吸力速度下的结果可为吸力执行器的设计提供参考。
摘要:电池电力动车组 (BEMU) 是实现部分电气化铁路线上区域铁路运输脱碳的有效途径。作为一种部门耦合手段,通过架空线岛提供的 BEMU 充电能源需求可以通过分散的可再生能源 (RES) 来满足。因此,可以获得用于铁路运输的完全无碳电力。在本研究中,我们分析了高效充电基础设施定位的成本降低潜力以及通过直接使用当地生产的可再生电力来满足 BEMU 能源需求的可行性。因此,我们建立了一种基于模型的方法,通过比较当地 RES 的能源供应和电网消耗来评估不同轨道旁电气化替代方案的相关生命周期成本 (LCC)。基于模型的方法应用于德国区域铁路线的示例。对于架空线岛,直接使用邻近风力发电厂的电力并配备现场电池存储,其相关 LCC 为 1.734 亿欧元/30a,而电网消耗为 1.762 亿欧元/30a,而全面电气化则为 2.245 亿欧元/30a。根据现有电气化和线路长度等特定场地因素,与全面电气化相比,BEMU 运行和部分架空线延伸可以显著降低充电基础设施的成本。
dohl是由英国政府运输部设立的政府拥有的实体,以履行1993年《铁路法》第30条根据《铁路法》第30条规定的运输部长,以维持铁路专营权的连续性。它充当运输部火车运营公司的控股公司。dohl拥有15个全资子公司,包括伦敦伦敦东北铁路有限公司('Lner'),北部火车有限公司('Northern Trains'),SE Trains Limited(“ SE Trains')和Transpennine Trains Limited(TPT),非交易火车机队(2019)Limited(2019)Limited('Train felet)组合数字数字,
摘要:电池电动多个单元(BEMU)是通往部分电气化铁轨线上脱碳的轨道运输的有效途径。作为行业耦合的一种手段,可以通过架空线岛提供的BEMU收集能源需求,可以通过分散的可再生能源(RES)覆盖。因此,可以获得用于铁路运输目的的完全无碳电力。在这项研究中,我们分析了有效充电基础结构定位的成本降低潜力,以及通过直接使用本地生产的可再生电力来覆盖BEMU能源需求的可行性。因此,我们设置了一种基于模型的方法,该方法评估了不同轨道旁电气化替代方案的相关生命周期成本(LCC),以比较本地RES和网格消耗的能源供应。基于模型的方法应用于德国地区铁路线的示例。在架空线岛的情况下,具有现场电池储存的相邻风电厂的电力直接使用会导致相关的LCC 173.4 m/30a,而电网消耗导致176.2 m/30a欧元,而完全电气化会导致224.5 m/30a的全部电气化。与完全电气化相比,取决于现有电气化和线长度,BEMU操作和部分高架线扩展等因素,BEMU操作和部分高架线扩展可能会导致重新开发基础设施的大幅降低。
2014 年 1 月 15 日下午,T10 和 T35 组组成一列列车,编号为 602L,运行于悉尼东南部的 Cronulla 和悉尼东部郊区的 Bondi Junction 之间(图 1)。列车于美国东部时间 16:04:50 从 Cronulla 出发(与时刻表相比,大约晚了两分钟)。列车由一名见习司机在驾驶员培训师的监督下驾驶。旅程最初在 Cronulla 支线上穿过悉尼郊区,然后在 Sutherland 汇入 Illawarra 线。在 Sutherland 和下一站 Jannali 之间,车轮滑移灯 (WSL) 在制动期间亮起四秒钟。根据对数据记录器下载的分析,在旅程的其余时间,WSL 在抵达 Redfern 站之前以不规则的间隔亮起 20 次。
自2005年MTR Disneyland Resort Line开放以来,与HK Disneyland合作开展了火车设计,它一直为当地社区和往返香港迪士尼乐园旅行的当地社区和游客提供方便,高效的铁路服务。该公司今天宣布(2024年4月11日)迪士尼乐园度假胜地的资产更新计划,其中包括购买配备高级电池驱动系统的三辆新的4车火车并替换信号系统。新火车和新信号系统的目标是在2028年运作。资产更新项目标志着MTR具有先进电池驱动功能的火车的引入。新火车可以在充电时从高架线上收到电力,也可以使用现有高架行为提供的电力运行。相关功能为MTR提供了将来设计火车操作的灵活性。在迪士尼乐园度假胜地运营的现有火车已采用全自动操作。火车的外部和室内设计以及装饰都以迪士尼为主题。MTR Corporation将再次与香港迪士尼乐园度假村合作,设计新火车,并结合迪士尼主题的元素,为乘客创造神奇的旅程。公司继续将资源投入到铁路资产的续签和维护中,以确保铁路系统保持最佳状态,同时还引入了先进的技术以增强运营效率和客户体验。迪士尼乐园度假胜地线的车队由三列4车火车组成。该公司设想,随着火车技术和设计的升级和更新,迪士尼乐园度假胜地将在2028年以后以全新的外观为乘客提供服务。目前的火车是从城市线列车(通常称为M型培训)中修改和升级的,这些火车于1994 - 95年进行了服务。迪士尼乐园度假村线的信号传导系统已经使用了近20年。该公司将从CRRC Qingdao Sifang Co.,Ltd。采购新火车,而新的信号系统将由交通控制技术有限公司,基于“基于通信的火车控制”技术提供,该技术现已在该行业中使用,并采用新的和“和先进的“ Train Toart-Toar-to-Train”通信技术。