环境恶化、资源有限和油价波动推动了摩洛哥向清洁和可再生能源的转型。然而,该国在满足未来能源需求方面面临挑战,导致对进口化石燃料的依赖增加,碳排放增加。为了应对这些挑战,摩洛哥为可再生能源部署设定了雄心勃勃的目标。本文研究了可再生和不可再生能源消费之间的关系,并分析了它们对摩洛哥盈利增长的影响。我们的实证结果表明,可再生能源与盈利可持续发展呈正相关,可再生能源消费与盈利增长以及盈利增长与二氧化碳排放之间存在因果关系。需要创新的融资解决方案来支持可再生能源系统的发展,因为它们提供可持续、无限和脱碳的能源来应对未来的能源挑战。摩洛哥发展太阳能、风能和水力发电的战略使该国处于一个有希望的位置,既能满足能源需求,又能减少碳排放。关键词
几十年来,识别学习背后的神经机制并寻找改进它们的新方法一直是一个重要的研究课题。迄今为止,睡眠是影响记忆巩固的最受关注的因素之一。有人提出,睡眠期间海马皮质会重放记忆痕迹,以逐渐强化记忆表征 (1)。据推测,这种影响是通过以下相互作用实现的:通过主动神经元重放记忆表征来强化相关突触,通过下调非相关突触来锐化表征 (2)。非快速眼动睡眠 (NREM) EEG 特征,例如慢振荡、纺锤波和丘脑涟漪,被认为可以协调这一过程 (3 – 5)。经颅直流电刺激 (tDCS) 等非侵入性脑刺激技术已被引入作为调节记忆表征神经整合的工具 (6)。经颅电刺激装置产生的慢电波(慢振荡 tDCS,so-tDCS;经颅交流电刺激,tACS)已被证明能够诱发内源性慢振荡并增强慢
摘要 — 本文重点研究多种供能方式与弹性负荷的区域能源系统的优化调度问题。针对多能源系统(MES),建立了包含储能系统和集成电动汽车(EV)的能源枢纽(EH)模型。基于该模型分析了污染物交易市场对总运行成本的影响,进一步提出了实现MES购电成本和排污税成本最小的优化调度策略。最后,比较了固定模式和响应模式的经济效益,讨论了储能装置和多能互补模式对能源利用效率的贡献。仿真结果表明,EH优化调度策略能够合理协调各种能源互补模式,同时能够提高EH的运行经济性,保证需求侧获得更好的响应效果。敏感性分析表明污染物排放价格变化对减排的影响。
是制造商的替代传动系统策略。一组制造商将其计划重点放在仅限于无排放的传动系统(“一柱战略”)上。此策略的重点是电池电动卡车。一组卡车制造商正在采取另一种策略,他们同时推动电池和燃料电池传动系统(“两柱策略”)。一柱策略的代表认为,电池卡车的运营成本低,比氢气和燃料电池的总拥有成本(TCO)更高。此外,电池卡车的使用将在相对较短的时间内与传统柴油卡车实现成本奇偶性。两柱战略的代表指出了道路运输中的多种应用和使用场景。尤其是对于长途交通和国际,跨境交通,氢和燃料电池,作为合适的传动系统选择。
Brodie于1872年首先描述了CO/CO 2与H 2的混合物与H 2的混合物。[1]三十年后,1902年,“法国正世俗主义”的促进者保罗·萨巴蒂尔(Paul Sabatier)和父亲让·巴蒂斯特·森德伦斯(Jean Baptiste Senderens)[2]描述了他们与CO和CO 2氢化对镍催化剂的反应有关的发现。[3]两种流室MIC反应有选择性地产生甲烷。在镍上,反应在250°C下轻松进行,而在CO 2的情况下需要350°C。[4]使用较高的温度引起的碳沉积。使用钴的使用暗示在较高温度下起作用,以开始反应。几年后,萨巴蒂尔(Sabatier)以有远见的方式提议将这种反应应用于CO 2和电解产生的氢气的产生或加热气体。[5]部分要归功于这些关于CO 2甲基化的研究(今天也称为Sabatier反应),Sabatier于1912年与Victor Grignard一起获得了化学诺贝尔奖。从历史上看
彻底淘汰化石燃料。欧盟议会制定了“欧洲绿色协议”,将当前的挑战转化为欧洲的机遇。摆脱化石燃料将是未来几年和几十年的挑战。交通作为二氧化碳排放的主要贡献者之一,正在朝着电动汽车的方向发展。由于电池在充电时需要瞬时电力,因此电能需要始终可用。这意味着风能和太阳能等众所周知的可再生能源系统的强劲增长。由于风能和太阳能并非一直可用,因此持续脱碳的关键是电能的储存。解决储存挑战是从化石能源到可再生能源的能源转型的重要组成部分。这使得解决储存问题成为能源革命的重要组成部分。为了合理地实施脱碳,需要大规模的储存设施。氢气(H2)和合成燃料是一种潜在的解决方案,因为它们可以储存更长时间。[1]
Triboelectric纳米生成器(Teng)脱颖而出,是可穿戴应用最有希望的新兴可再生能源收集技术之一。11此类设备能够利用各种形式的机械能,例如振动,压力和旋转,并将其转化为电。12 - 15托架电荷建立在表面上,在机械应力或变形下,具有不同电子亲和力的两种不同材料会导致两种电极之间的电势差,并且可以直接用于电源范围,以供电,例如LED或MINI手表。16,17此外,产生的电力可以存储在电化学电池或超级电容器中,从而使各种端口设备的运行。最近出现了18种基于纺织品的Tengs作为电子纹理应用的自源来源,由于其轻巧,柔性和可穿戴的性质而引起了相当大的关注。19 - 21但是,它们的低功率发电能力表明了足够的功能,以进一步开发为可穿戴的电子纹理创造自给自足的功率来源。22
减缓气候变化将创造新的自然资源和供应链机遇和困境,因为建造新的低碳能源设备和基础设施需要大量原材料 ( 1 )。然而,尽管人们试图改善治理和企业管理,但许多矿产和金属资源的采购仍然发生在普遍认为管理不善的地区,环境状况仍然变化无常,在某些情况下,甚至成为资源开采地冲突的根源 ( 2 )。因此,这些采掘和冶炼行业在世界许多地方留下了环境恶化、对公共健康的不利影响、边缘化社区和工人以及生物多样性破坏的遗产。我们确定了关键的可持续性挑战,这些挑战涉及供应金属和矿物(包括钴、铜、锂、镉和稀土元素 (REE))的行业实践,这些金属和矿物是太阳能光伏、电池、电动汽车 (EV) 电机、风力涡轮机、燃料电池和核反应堆等技术所必需的。然后,我们提出了四项整体建议,以使采矿和金属加工更加可持续和公正,并使采矿和采掘业更加高效和有弹性。
在过去十年中,混合有机无机钙钛矿 (HOIP) 已成为光电子学的重要材料家族。低陷阱密度 1 和长载流子扩散长度 2 – 5 使得太阳能电池的效率超过 20% 6 – 9;接近统一的光致发光量子产率和可调发射使高性能发光二极管 (LED) 能够覆盖可见光和近红外光谱的部分 10 – 12;而大光增益使得脉冲和连续波光泵浦激光的阈值都很低 13 – 17。由于具有高迁移率 18 – 21 和介电常数 22,这些材料也被探索用作光电探测器 23、24。此外,它们的较大 Rashba 分裂 25、26 和较长的自旋寿命 27 – 29 激发了对自旋电子学应用的研究 30 – 32。HOIP 具有灵活的晶体结构和可调节的有机-无机混合成分。这使得可以加入手性配体 33 – 37,从而使钙钛矿可用于手性光电子 38、39、铁电 40 – 42 和手性自旋电子 43、44 应用。
降低时尚的变化将使新的自然资源和供应链的机会和困境都构成新的,因为建造新的低碳能设备和基础设施需要大量原材料(1)。然而,尽管试图改善治理和更好的公司管理,但在通常因犯罪现象所承认的领域中,许多矿产和金属资源的采购仍然存在环境反复无常,在某些情况下,是资源提取场所的冲突来源(2)。因此,这些提取性和冶炼业的行业在世界上许多地区都留下了遗产,对公共卫生,边缘化社区和工人的不利影响以及生物多样性损害。我们通过用于提供金属和矿物质的行业中的实践来确定关键的可持续性挑战,包括钴,铜,锂,镉和稀土元素(REES)(REES),需要用于太阳能光电燃料,电池,电池,电动机,电涡轮机,燃料电池,燃料电池,燃料电池,燃料电池,燃料式核弹和核编辑器,以及诸如太阳能光电燃料,电池和诸如等技术。然后,我们提出了四个整体建议,以使矿和金属加工更具可持续性,并使采矿和外推工业更加高效和弹性。