图 5. Quizartinib 和 4ACP 在 FLT3 ATP 结合位点的结合模式。(A)、(C) Quizartinb 和 4ACP 分别在 FLT3 酶的 ATP 结合位点的 3D 结合相互作用(PDB 代码:4XUF,DFG-out 构象)。Quizartinib 和 4ACP 表示为具有白色骨架的棒,相互作用的氨基酸表示为具有绿色骨架的棒,DFG 基序显示为黄色棒,氢键
神经生长因子(NGF)单克隆抗体是一种治疗慢性疼痛的治疗方法,但由于某些骨关节炎患者的关节损伤恶化而未能获得FDA批准。我们报告说,Neuropilin-1(NRP1)是NGF的富含伤害感受器的联合受体,这对于疼痛的疼痛信号是与肌霉素相关的激酶A(TRKA)信号所必需的。NGF与纳摩尔亲和力结合NRP1。NRP1与人和小鼠伤害感受器中的TRKA共表达。NRP1抑制剂可防止对人和小鼠伤害感受器的刺激激发,并消除小鼠NGF诱发的伤害感受。NRP1敲低钝化NGF刺激的TRKA磷酸化,激酶信号传导和转录,而NRP1的过表达增强了NGF和TRKA信号传导。以及与NGF相互作用的NRP1与伴侣TRKA相关联,从生物合成途径到质膜,然后再与信号内体相关联,从而增强了NGF诱导的TRKA二聚体化,内吞作用和信号传导。分子建模支持C末端基本NGF基序(R/KXXR/K)与NGF/TRKA/NRP1 Plasmambrane复合物中的细胞外“ B” NRP1结构域与2:2:2 stochiementry的相互作用。gα相互作用的蛋白C-末端1(GIPC1),一种脚手架NRP1和TRKA与肌球蛋白VI的PDZ结合蛋白,在具有NRP1和TRKA的伤害感受器中共表达。敲低的GIPC1消除了NGF诱发的伤害感受器的激发和小鼠的疼痛样行为。因此,NRP1是NGF/TRKA疼痛信号传导所必需的先前未识别的共受体。NRP通过衔接蛋白GIPC1结合NGF和伴侣TRKA与质膜和信号内体。NRP1和GIPC1在伤害感受器中的拮抗作用提供了期待已久的非阿片类药物替代系统性抗体NGF NGF固相的替代品,用于治疗疼痛。
引言神经生长因子(NGF)的刺激能够增强交感神经元的生长的能力(1)。tovyosin相关激酶A(TRKA),一种受体酪氨酸激酶(RTK),介导了NGF的神经营养作用(2)。在NGF与周围神经末端的TRKA结合后,NGF/TRKA信号体被恢复到SOMA,在那里它们调节了转换(3,4)。p75 NTR,NGF和Pro-NGF的受体(5,6),作用促凋亡信号通路(7)。NGF和TRKA也介导疼痛(8)。尽管在神经元发育和疼痛的背景下对NGF及其受体进行了深入的研究,但对NGF信号传导的理解不足阻碍了对NGF指导的治疗剂的认可。慢性疼痛遭受了百分之二十的人口,但受到非甾体类抗炎药和阿片类药物的治疗不足,这些药物缺乏疗效并具有危及生命的副作用。
背景 BDNF、NGF、NT-3 和 NT-4/5 等神经营养因子对神经元的发育和存活至关重要,它们通过 Trk 受体 (TrkA、TrkB、TrkC) 发挥作用。它们在包括阿尔茨海默病 (AD) 在内的神经退行性疾病中发挥关键作用,支持神经元存活、可塑性和认知。AlzeCure 开发的 NeuroRestore ACD856 是 Trk 受体的正变构调节剂,可增强神经营养因子信号传导。它已成功完成 I 期临床试验,显示出非常好的安全性和药代动力学,以及 ACD856 的中枢神经系统活性信号。在体内模型中,ACD856 表现出促认知作用、提高 BDNF 水平和持久的抗抑郁样作用。在体外,ACD856 显示出增强的神经突生长和神经保护作用,即对抗 Aβ 毒性,表明既具有认知增强/症状特性,又具有疾病修饰特性。鉴于 NGF、BDNF 及其 Trk 受体不仅由神经元表达,也由免疫细胞、小胶质细胞和星形胶质细胞表达,并参与调节免疫功能,即增强 B 细胞和 T 细胞存活并调节细胞因子和抗体的产生,我们旨在探索 ACD856 在 AD 和其他与年龄相关的疾病中的潜在免疫调节和抗炎作用。
什么是疼痛? 尽管我们用“疼痛”一个词来描述包括酸痛、不适和不快等一系列不愉快的感觉,但疼痛本身很复杂,可能由多种截然不同的情况引起。认识到这一点很重要,因为每种疼痛情况都可能需要不同的治疗干预(1、2)。疼痛有一些方面确实是生理性的,例如,我们能够察觉到潜在的破坏性外部刺激:极热或极冷、过度的机械力和化学刺激物。这构成了伤害性疼痛,它是由高阈值伤害性感受器感觉神经元的激活驱动的,这些神经元适合于将这些有害刺激转化为进入中枢神经系统(CNS)的感觉输入。伤害性感受器通过激活伤害性回路引起的急性疼痛有助于我们学会避开环境危险(3-6)。疼痛具有高度适应性,在我们与外界的日常互动中,它对于防止损伤至关重要。缺乏这种损伤预警系统的人,比如因电压门控钠通道 1.7 (Nav 1.7) 或原肌球蛋白受体激酶 A (TRKA) 受体功能丧失突变而先天性对疼痛不敏感的人,通常会在进食时损伤舌头和嘴唇,在走路时损伤脚趾,在探索物体时损伤手指,并且在骨折或患阑尾炎时没有任何警示,从而缩短寿命 (7,8)。因此,保留伤害性疼痛至关重要,除了手术期间或之后或重大创伤后立即发生。另一种适应性疼痛是组织损伤或由于病原体侵入或病理性炎症引起炎症时发生的炎症疼痛。随之而来的免疫系统激活导致产生炎症介质,这些介质作用于痛觉感受器,既直接激活(9-11),又使其敏感(12、13)。因此,它们的激活阈值下降,因此低强度刺激(如轻触或关节运动)现在会激活敏感的痛觉感受器,无害刺激会变成疼痛。这种疼痛,至少在急性情况下,是
抗菌素耐药性的出现迫切需要针对致命细菌物种的13种治疗策略。在这项研究中,我们研究了激酶抑制剂作为宿主定向疗法(HDTS)的14个潜力,用于打击由细胞内细菌引起的15种传染性疾病,特异性沙门氏菌Typhimurium(STM)和16个结核病结核菌(MTB)。,我们使用18个基于人类细胞系和原发性19个巨噬细胞的STM和MTB的细胞内感染模型,使用18个已发表激酶抑制剂集(PKIS1和PKIS2)筛选了来自两个已发表激酶抑制剂集(PKIS1和PKIS2)的17个已知靶标轮廓(PKIS1和PKIS2)的17个已知靶标轮廓。此外,使用20种斑马鱼胚胎感染模型评估了化合物的体内功效。我们的激酶抑制剂筛查确定了STM的14个命中化合物21和MTB的19种命中化合物,这些化合物有效地针对细胞内细菌,宿主细胞有22种无毒。进一步的验证实验表明,大多数23个STM HIT化合物的高疗效以及它们在细胞系24和原发性巨噬细胞中完全清除细胞内感染的能力。从这些结构相关的STM HIT化合物,25 GSK1379738A和GSK1379760A中,在感染的26个斑马鱼胚胎中对STM表现出显着的有效性。针对细胞内MTB的活性化合物包括27种莫菲诺 - 米达佐/三唑 - 吡啶酮酮,专门针对激酶PIK3CB和28个PIK3CD,以及2-氨基苯二甲咪唑以及靶向BLK,ABL1和TRKA。31总体而言,这项研究29提供了对作用于宿主 - 病原体界面作用的关键激酶靶标,30种新型激酶抑制剂作为细胞内细菌感染的潜在HDT。