建筑业是创造就业机会的最大行业之一,对经济产生了巨大影响。同时,建筑物消耗大量的水和电等自然资源,其不利的环境影响受到广泛关注。根据世界可持续发展工商理事会的数据,建筑物贡献了总能源消耗的 40% 以上(Mull,1998)和温室气体排放的 30%(Payne 等人,2012)。因此,建筑物的高能源成本和环境影响正成为一个主要问题(Li 等人,2021a)。新概念绿色建筑(GB)被认为是减少建筑物对环境和能源成本不利影响的机会。GB 被定义为一个可以与具有高效能源利用和高可持续性的建筑物互换的术语。在过去十年中,对 GB 的研究越来越多,一个主要研究方向是降低能源成本。供暖、通风和空调 (HVAC) 系统是商业建筑的主要能源消耗来源,占年总能源使用量的 60% 以上。先前的文献已投入大量研究精力来建模和优化 HVAC 系统。它们可以分为两类方法:基于物理的方法和数据驱动的方法。基于物理的方法通常是通过数学方程来开发的,以描述 HVAC 系统模块,并已广泛应用于 HVAC 相关研究。Sakulpipatsin 等人 (2010) 提出了扩展的基于物理的 HVAC 系统模型,并使用 TRNSYS 软件进行优化研究的模拟。Zhang 等人 (2013) 引入了一种新的基于物理的模型来研究 HVAC 能耗机制,并在模型中包含了一个新的模型参数,即进入者。Teodosiu 等人 (2003) 开发了一个分析模型来
本研究提出并彻底检验了一种基于氢存储的太阳能和风能有效混合的新方法,以提高电网稳定性并降低峰值负荷。抛物面槽式集热器、氯化钒热化学循环、氢存储罐、碱性燃料电池、热能存储和吸收式制冷机构成了建议的智能系统。此外,拟议的系统还包括一个风力涡轮机,用于为电解器单元供电并最大限度地缩小太阳能系统的规模。基于规则的控制技术建立了与能源网络的智能双向连接,以补偿全年的能源费用。瞬态系统模拟 (TRNSYS) 工具和工程方程求解器程序用于对瑞典住宅建筑进行全面的技术经济环境评估。使用基于灰狼算法与人工神经网络的 MATLAB 进行四目标优化,以确定指标之间的最佳平衡。根据结果,在最佳条件下,一次能源节省、二氧化碳减排率、总成本和购买能源分别为 80.6 %、219 %、14.8 $/h 和 24.9 MWh。从散点分布可以得出结论,燃料电池电压和集电极长度应保持在最低范围,而电极面积是无效参数。建议的可再生驱动智能系统可以满足建筑物全年 70% 的需求,并将多余的产量出售给当地能源网络,使其成为一种可行的替代方案。太阳能在冬季储存氢气的效率远低于风能,这证明了结合可再生能源来满足需求的好处。通过降低 61,758 公斤的二氧化碳排放量,预计建议的智能可再生系统可能会节省 7719 美元的环境成本,相当于重新造林 6.9 公顷。
摘要 住宅供暖和制冷行业日益电气化,主要使用电动热泵 (HP) 与热能/电能存储系统相结合。虽然这些发展有助于增加该行业中可再生和低碳能源的份额,但要充分利用该技术的潜力,需要对这些系统进行智能控制,以考虑未来预测的可再生能源可用性和相应的 HP 系统性能。然而,以适合智能控制的方式对具有复杂内部动态的系统进行建模具有挑战性。模型需要足够复杂才能准确捕捉系统的非线性和复杂性,同时又要足够快,以便在合适的计算时间内彻底搜索解空间。动态规划 (DP) 是一种很有前途的智能控制方法,因为它结合了使用复杂非线性模型的能力,同时是一种穷举搜索算法,保证找到全局最优值。本文介绍了一个创新的建模框架,该框架包含 HP 变电站主要组件(即 HP 和热能存储 - TES)的降阶模型 (ROM),以适合在 DP 中使用的方式进行阐述;这些模型包括影响系统性能的重大物理操作约束(例如,HP 压缩机变速、非线性性能系数 - COP - 依赖于室外和配送温度),同时最大限度地减少优化器需要处理的状态变量数量(即 TES 温度、HP 热容量和电容量)。在应用于示例 HP 系统时,我们的系统模型与用作参考基础事实的详细 TRNSYS 对应模型相比表现出色。该系统通过动态规划优化方法实现了显着的成本节约,与传统的基于规则的控制相比,功耗降低了 13%。
可以通过更高的密度和更高的能源效率的房屋替换陈旧的库存来减少房屋的能源足迹,该房屋配备了可再生能源的能源生产。在这项研究中,考虑了一个“双密度”模拟方案,在该场景中,社区中每个现有的独立房屋被同一土地上的两个相等起居区的房屋取代。新房屋被认为配备了多种能源效率措施(信封,HVAC和家用热水)和建筑物集成的光伏(BIPV)屋顶。TRNSYS软件用于模拟加拿大魁北克蒙特利尔建筑物的年度能源性能(45.5°N)。发现这两个新房屋可容纳同一土地上的两倍的人数,其能量比现有房屋少30%。单独使用的新房屋所需的电力比现有房屋少65%(从22,560降低到7,850 kWh yr -1)。此外,安装在两个新房屋上的BIPV屋顶可能会产生近三倍的电力(44,000 kWh yr -1)(15,700 kWh yr -1)。每年,BIPV系统可以直接提供房屋电力的近一半(44%)。年度太阳能发电的显着部分(84%)可以在房屋上直接使用,可以在现场存储以供以后用于增加自我消耗(例如,电力对电能或电力电动汽车),或者可以将其导出到在其他地方的网格中的脱碳(E.G.燃料,Hydrogen,Hydrogen)的脱碳化。能源有效构建和现场可再生能源生产的综合作用将使乘员从消费5,640 kWh yr-1转变为生产3,540 kWh yr-1。住宅致密化可以显着促进现有社区进入弹性的积极能源区。
建筑物的热隔离是当前能量和环境问题的核心。随着2024年生效的新法规,建筑行业正处于转折点。这些加强的标准旨在显着提高新建筑物和现有建筑物的能源效率,同时减少其碳足迹。对于建筑专业人士,建筑师和所有者,了解这些变化对于设计和翻新满足环境要求的建筑物至关重要。从2012年热调节(RT 2012)到2020年环境调节(RE 2020)的转变标志着建筑物热绝缘的方法是一个重要的里程碑。这种进化不仅增强了能源效率标准,而且还引入了新的环境标准。RE 2020优先考虑三个主要目标:减少建筑物的碳足迹,提高其能源性能并增强夏季舒适感。为了实现这些目标,热绝缘标准已得到显着加强。例如,与RT 2012相比,不透明壁的最小热阻力平均增加了20%。最重要的变化之一涉及整体建筑设计方法。虽然RT 2012主要关注能源消耗,但RE 2020考虑了建筑物的整个生命周期,从建筑到寿命末。这种整体方法意味着对绝缘材料的选择进行了更深入的反思,不仅考虑了它们的热性能,还考虑了它们的环境影响。u值越低,绝缘效果越好。2024年建造信封的技术要求比以前更为严格。这些新标准旨在在建筑物的内部和外部之间建立几乎不可渗透的热屏障,从而减少加热和空调需求。关键因素是热传输的系数(U值),该系数根据内部和外部之间的温度差异测量通过墙壁的热量。这是2024年各种墙壁最大允许的U值的概述: *外墙:0.15 w/m²k *屋顶:0.10 W/m²K *下层平板:0.20 w/m²K * Windows:1.2 w/m²K这些值这些值代表了先前的标准,代表了平均允许的30%的标准,均为先前的标准率高。为了实现这些性能,不可避免地使用高质量的绝缘材料和增加的绝缘厚度。热桥,热量更容易逃脱,在新法规下需要特别关注。The coefficient psi (Ψ), which measures linear heat loss at junctions between building elements, must now meet very strict values: * Junction wall/floor: Ψ ≤ 0.5 W/mK * Junction wall/roof: Ψ ≤ 0.3 W/mK * Junction between walls: Ψ ≤ 0.2 W/mK * Window perimeter: Ψ ≤ 0.4 W/mK Let me know if you'd like me to rephrase 任何事物!les nouvelles normes d'Aintrique thermique 2024 jexigent l'l'iperiques de construction de constructionavancéespor garantirl'Efficacitédesbâtiments。la Mesure del'étanchéité-l'Air est Cruciale,Avec des Seuils以及严格的MesurésPAR LE系数Q4PA-SURF。该过程涉及:1。2。3。专业人员必须从设计阶段整合此要求,并提供合适的密封解决方案。强烈鼓励使用基于生物的材料在热绝缘材料中,因为它们具有降低的环境影响,同时提供出色的绝缘性能。标准2024将这些材料纳入新结构的最低率。生物包封的材料必须符合特定的性能标准,例如小于或等于0.040 W/(M.K)的热导率(λ)。将这些材料的整合到绝缘材料中不仅满足技术要求,而且也是全球可持续建筑方法的一部分。为了满足2024个热绝缘标准的增加要求,建筑部门必须依靠创新的技术和解决方案。提前不仅可以满足监管标准,还可以优化建筑物的整体能源性能。从外部(ITE)的热绝缘材料正在经历明显的演变以适应标准2024。新的ITE系统结合了高性能复合材料和连接的传感器,从而可以对建筑物信封的热和潮流性能进行实际监视。最后,相变材料(PCM)代表了热绝缘领域的重大进步,因为它们具有存储和释放大量能量的能力。彻底的热学习用户批准的软件。在从固体到液体的相过渡期间,反之亦然,集成的PCM(相变材料)允许建筑物内的自然温度调节,从而减少加热和空调需求。PCM可以纳入各种形式,例如嵌入石膏面板中的微胶囊,带有聚合物矩阵的复合材料或用于热量储能的宏观化系统。这些解决方案增强了建筑物的热惯性,这显着有助于实现2024年标准设定的热舒适目标。门窗在全球建筑物绝缘层中起着至关重要的作用。2024标准对太阳因子(SW)和发光传输(TL)施加了更高的性能要求。具有低发射率的三层玻璃窗口已成为新结构的规范,其UW值低于0.8 W/(m².k)。该领域的创新涉及能够根据外部条件调整其光学和热性能的动态玻璃系统。这些电致变色或热色素技术全年优化太阳能增益和发光度,从而降低了建筑能源消耗。地板和屋顶绝缘材料也有了重大的技术进步。在地板上,闭孔泡沫隔离器可确保高温电阻率,同时保持完美的空气和湿度紧密,尤其适用于卫生坑或陶土板构造。对于屋顶,真空绝缘面板(VIP)正在越来越受欢迎,提供了厚度降低的出色绝缘材料,使其在空间有限的翻新项目中有利。4。5。热绝缘已经从简单地将隔离材料应用于复杂而智能的系统,以整合高级技术来优化整体建筑能源性能。计算方法和2024年认证的方法已经发生了重大发展,以适应新的热和环境绩效要求。这种整体方法可确保对建筑能源绩效的精确评估。动态热模拟软件(STD)在设计和评估符合2024标准的建筑物中起着至关重要的作用,对整个一年中建筑物的热行为进行了建模,考虑到方向,太阳能输入,热习惯,热习惯以及加热和频道系统。批准的2024认证软件必须集成THBCE的最新计算方法。要符合新的性能指标,设计师和建筑商必须考虑诸如Pleiades,DesignBuilder和TRNSYS之类的软件工具。这些程序不仅验证符合建筑标准,而且还优化建筑设计以提高能源效率。BBIO,CEP和TIC性能指标是2024方法论的关键。BBIO评估建筑物的生物气候质量,独立于能源系统,考虑了隔热,方向和太阳能收益等因素。在2024年,与RT 2012相比,BBIOMAX目标降低了30%,鼓励设计师优化建筑信封。CEP测量建筑物的主要能源消耗,用于加热,冷却,照明,热水生产和通风。TIC评估没有空调的夏季室内温度。2024标准为住宅建筑物设置了50 kWhep/(m².an)的Cepmax,这与以前的法规大幅度降低。为了实现这些雄心勃勃的目标,使用高性能能源系统并整合可再生能源是必不可少的。2024标准加强了此指标,要求室内温度每年不超过28°C超过28°C。这一要求推动了采用动态太阳阴影和夜间通风等被动解决方案。BBC-Feftinergie 2024标签代表了能量性能的卓越表现。要获得它,建筑物必须达到2020年的标准并超越。验证BBIO,CEP和TIC目标。 由认证组织进行的空气紧密度测试。 整个建筑物生命周期的碳足迹评估。 可再生能源的整合。 BBC-Feftinergie 2024标签需要的CEP至少比2020年标准(住宅建筑物40 kWhep/(m².an))低20%。 此外,它要求可再生能源满足建筑物需求的至少40%。 这些严格的标准推动了创新并采用了建筑部门的尖端技术。 2024年引入更严格的绝缘标准具有重大的经济和环境影响。 这种转变会影响建筑成本,财产价值和建筑物的生态足迹。 生命周期评估(LCA)成为评估隔离解决方案的全球环境影响的重要工具。验证BBIO,CEP和TIC目标。由认证组织进行的空气紧密度测试。整个建筑物生命周期的碳足迹评估。可再生能源的整合。BBC-Feftinergie 2024标签需要的CEP至少比2020年标准(住宅建筑物40 kWhep/(m².an))低20%。此外,它要求可再生能源满足建筑物需求的至少40%。这些严格的标准推动了创新并采用了建筑部门的尖端技术。2024年引入更严格的绝缘标准具有重大的经济和环境影响。这种转变会影响建筑成本,财产价值和建筑物的生态足迹。生命周期评估(LCA)成为评估隔离解决方案的全球环境影响的重要工具。这种方法考虑了材料生活的所有阶段,从提取到处置或回收。在2024年,必须为每个主要的建筑或翻新项目进行LCA。结果表明,某些基于生物的材料(例如木羊毛和大麻)通常比传统的绝缘选择更好。建筑物的新隔热标准远远超出了直接的热性能,并考虑了对环境的长期影响。例如,与传统的合成材料相比,使用木制羊毛面板可以将建筑物的碳足迹减少50年。目标不仅是减少能源消耗,而且是在整个建筑物的生命周期中最大程度地减少环境排放。为了实现这一目标,建筑师必须优化建筑物的各个方面,从物质选择到能源系统。新标准需要改变思维的转变,不仅要考虑即时成本和收益,还考虑了长期储蓄和环境影响。政府提出了经济激励措施,以鼓励采用这些标准,包括: *MapRimerénov':低收入家庭的90%覆盖范围 *以零利率为零:20年内20年内的eco-loan * 50,000欧元 *能源储蓄证书(CEE)(CEE):全面翻新的奖励这些奖励可显着降低这些薪资期。例如,耗资40,000欧元的100平方米房屋的全面翻新可能会在这些激励措施的帮助下从15年下降到7年,从而导致每年能源节省1,500欧元。减少碳排放是新标准的关键目标。E+C-(能量正和减少碳)计算方法已集成到法规中,为整个建筑物的生命周期设定了雄心勃勃的温室气体排放目标。到2024年,与2020年级相比,预计排放量将减少30%。要实现这些目标,建筑师必须专注于使用低碳材料,例如减少 - 连接器混凝土或本地采购的木材,并将可再生能源生产系统整合到建筑物中。建筑的未来正朝着更智能,更高效和对环境意识的建筑物发展,从而最大程度地降低了它们对地球的影响。(mbsurf_moy),可以放松生物气候需求阈值bbio_max,尤其是对于超过100平方米的房屋。地理状况:与位于热区(H2C或H3或H3且高度<400m)的房屋相关的调制(McGéo)的调制增加,从而使能源消耗天花板CEP_MAX,CEP,CEP,NR_MAX和CO2ICénergie_maxIcénergie_maxiCénergie_max通过使用空气条件的使用而增加。连接到热网络:对于连接到热网络的房屋,iCénergy_max平均天花板升至200 kg eqco2/m²,直到2027年。用于小规模的集体建筑物(shab≤1300m²)的适应与总建筑物表面积(MISURF_TOT)相关的调制,以减少构造排放天花板ICCONSTRUCTION_MAX,这考虑了每平方米参考表面的CO2排放。经验表明,由于电梯对小规模集体建筑的每平方米基础的重大影响,这种类型的建筑物确实受到指标ICConstruction的惩罚。用于组成小公寓(Smoyenne logement≤40m²)的集体建筑物基于平均公寓表面积(MISURF_MOY)的调制引入,以确定构造排放天花板ICCONSTRUCTION_MAX,考虑到小规模建筑(壁尺寸设备)的每平方尺度建筑物的每平方米基础上的较高密度,可用于墙壁,墙壁的设备,等等。对于配备太阳能电池板的建筑物:所有建筑物都受到RE2020的影响,无论大小如何:基于太阳能电池板安装(MIPV)的影响,当安装的碳足迹超过20kGGO2/m²时,基于太阳能电池板安装(MIPV)对施工排放天花板ICCONSTRUCTION_MAX的影响。由于这些设备的碳足迹,在存在太阳能电池板覆盖的重要表面积的情况下,可以放松建筑排放天花板。对于连接到分类热网络的建筑物:与能源消耗相关的二氧化碳排放的平均iCénergie_max天花板从2022 - 2024年延长至2025-2027。由于大多数热量网络仍然没有足够的可再生能源速度,因此公共当局希望为网络经理提供三年的时间,以进行必要的工作以脱碳,使其网络化。