离子通道是治疗药物的第三大靶点。离子通道药理学是寻找人类疾病新治疗方案的重要研究领域。近十年来,人们对瞬时受体电位 (TRP) 家族的离子通道蛋白,即黑素亚家族成员 7 (TRPM7) 的兴趣日益浓厚,将其作为新兴的药物靶点。TRPM7 是一种双功能蛋白,具有与活性激酶结构域融合的镁和钙传导二价离子通道。TRPM7 在包括大脑在内的人体组织中普遍表达,并调节各种细胞生物学过程,如镁和钙稳态、细胞生长和增殖以及胚胎发育。由于 TRPM7 对细胞内 Mg·ATP 水平波动具有独特的敏感性,因此 TRPM7 在神经元中提供了细胞代谢状态和细胞内钙稳态之间的联系。因此,该蛋白质在缺血和缺氧性神经元细胞死亡和脑损伤中起着关键作用,并且是脑缺血和中风中关键的非谷氨酸机制之一。目前,最有效和最具体的 TRPM7 抑制剂是 waixenicin A,它是来自夏威夷软珊瑚 Sarcothelia edmondsoni 的一种二萜类化合物。使用 waixenicin A 作为药理学工具,我们证明 TRPM7 参与促进体外神经突生长。最近,我们发现 waixenicin A 可减轻缺氧缺血性脑损伤并保留小鼠新生的长期行为结果。我们在此表明 TRPM7 是中枢神经系统疾病和障碍的新兴药物靶点,而 waixenicin A 是这些疾病的可行药物先导。
摘要:Waixenicin A是八角形肌s骨Edmondsoni的异干二萜,是TRPM7离子通道的选择性,有效的抑制剂。研究Waixenicin A的结构 - 活性关系(SAR),我们从S. Edmondsoni分离并分离了相关的二萜。除了已知的二烯酸A(1)和B(2)外,我们还纯化了六种异乙烷二萜,7 s,8 s-8 s-Epoxywaixenicins a(3)和B(4),12-二酰基韦二烯酸A(5),Waixenicin E(Waixenicin e(6),Waixenicin f(7)和20-8),以及20-8)。我们通过NMR和MS分析阐明了3-8的结构。化合物1、2、3、4和6在基于细胞的测定中抑制TRPM7活性,而5、7和8则无活性。出现了一个初步的SAR,表明对九元环的改变并没有减少活性,而12-乙酰毒性组与二氢吡喃结合使用似乎是TRPM7抑制作用所必需的。通过形成共轭氧化核离子中间体,提出生物活性化合物为潜在电物质。全细胞斑块钳实验表明,怀森辛素A抑制作用是不可逆的,与共价抑制剂一致,并且显示了Waixenicin b(2)的纳摩尔效力。1、3、7和8的构象分析(DFT)揭示了对Waixenicin A和同类物的构象的见解,并提供了有关拟议的药效团稳定的信息。
trpm7是具有α-激酶域的非选择性二价阳离子通道。与其广泛的表达相对应,TRPM7在广泛的细胞功能(包括增殖,迁移和生存)中起作用。越来越多的证据表明,TRPM7在包括脑癌在内的各种癌症中也异常表达。由于离子通道具有广泛的组织分布,并且在功能失调时会导致广泛的生理后果,因此这些蛋白质可能是令人信服的药物靶标。实际上,离子通道构成了酶和受体之后的第三大药物靶类型。文献表明,TRPM7的抑制会导致几种人脑肿瘤的迁移,侵袭和增殖的抑制。因此,TRPM7提出了治疗性脑肿瘤干预措施的潜在靶标。本文回顾了有关TRPM7的当前文献作为脑肿瘤的潜在药物靶标,并概述了与药物,肿瘤学和离子通道功能相关的通道的各种选择性和非选择性调节剂。
慢性炎症推动了癌症的发展和发展(48,49)。在人类中,两个Cox同工型都会导致炎症过程(50)。 在包括CML在内的癌症实体中,COX-2但不表达COX-1的表达(3,51,52)。 在人类中的研究表明,使用特定COX-2抑制剂的治疗可能会提供有效的癌症治疗方法(51-53)。 常规的非甾体类抗炎药(NSAIDS)通常用于治疗急性炎症和促炎性疾病(54)。 但是,它们通常伴随着对心血管系统,胃肠道或肾脏毒性的不利影响。 即使是较新的COX-2抑制剂,例如Celecoxib,尽管还原在人类中,两个Cox同工型都会导致炎症过程(50)。在包括CML在内的癌症实体中,COX-2但不表达COX-1的表达(3,51,52)。在人类中的研究表明,使用特定COX-2抑制剂的治疗可能会提供有效的癌症治疗方法(51-53)。常规的非甾体类抗炎药(NSAIDS)通常用于治疗急性炎症和促炎性疾病(54)。但是,它们通常伴随着对心血管系统,胃肠道或肾脏毒性的不利影响。即使是较新的COX-2抑制剂,例如Celecoxib,尽管还原
受体酪氨酸激酶(RTKS)是一类跨越细胞表面受体的膜,通过膜传递细胞外信号,通过酪氨酸激酶(TKS)触发各种细胞内信号传导,并在癌症发育中起重要作用。靶向RTK的治疗方法,例如血管内皮生长因子受体(VEGFR),表皮生长因子受体(EGFR)和血小板衍生的生长因子受体(PDGFR)和TKS,例如C-SRC,ABL,JAK等TKS,可用于治疗人类罐头。尽管对延长生存期的癌症治疗有利,但这些酪氨酸激酶抑制剂(TKI)和靶向RTK的单克隆抗体也伴有不良影响,包括心血管毒性。TKI诱导的心血管毒性的机制尚不清楚。 瞬态受体电位梅拉斯汀 - 子女7(TRPM7)是一种普遍表达的Chanzyme,由基于膜的离子通道和细胞内α-激酶组成。 trpm7是一个调节跨膜Mg 2 +和Ca 2 +的阳离子通道,并参与了心血管系统中的多种(病原)生理过程,有助于高血压,心脏纤维,心脏纤维传播,体外肿瘤和心律失常。 重要性,我们和其他人在不同的细胞类型中表现出TRPM7,RTK和TK信号传导之间的显着串扰,包括血管平滑肌细胞(VSMC),这可能是TKIS及其心血管菌有效之间的联系。TKI诱导的心血管毒性的机制尚不清楚。瞬态受体电位梅拉斯汀 - 子女7(TRPM7)是一种普遍表达的Chanzyme,由基于膜的离子通道和细胞内α-激酶组成。trpm7是一个调节跨膜Mg 2 +和Ca 2 +的阳离子通道,并参与了心血管系统中的多种(病原)生理过程,有助于高血压,心脏纤维,心脏纤维传播,体外肿瘤和心律失常。重要性,我们和其他人在不同的细胞类型中表现出TRPM7,RTK和TK信号传导之间的显着串扰,包括血管平滑肌细胞(VSMC),这可能是TKIS及其心血管菌有效之间的联系。在这篇综述中,我们总结了抗癌治疗期间RTK抑制剂(RTKI)和TKIS在心血管毒性中的影响,重点是TRPM7/mg 2 +作为RTKI/TKI诱导的心血管毒性的介体的潜在作用。我们还描述了TRPM7在癌症发育和心血管疾病中的重要作用,以及TRPM7与RTK之间的相互作用,为用RTKI/TKI治疗的癌症患者提供了有关心血管疾病的可能机制的见解。
在海马中,由于ICV-STZ引起的游离梯形损伤是用TBARS水平表示的脂质过氧化指数。MDA级别。将含有0.5 mL Tris-HCl和0.5 mL上清液的反应混合鸡尾酒在37°C下孵育2小时。之后,加入1 ml三氯乙酸(TCA,10%),并以1000×g离心10分钟。将获得的上清液与1 mL硫代硫酸硫酸(TBA 0.67%)混合。然后将混合管放入沸水中10分钟。冷却后,将蒸馏水(1ml)添加到其中。吸光度记录为532 nm。TBARS水平均表示为NMOL MDA/MG蛋白(Sachdeva和Chopra,2015年,Wills,1966年)。
摘要:粘膜黑色素瘤(MM)是一种罕见且侵略性的临床癌症,主要发生在头部,颈部和肛门生殖器区域。尽管遗传学最近的进步和革命治疗的发展,例如免疫疗法,但MM的预后仍然很差。犬MM与人类对应物共享几种临床,组织学和遗传特征,提供了相关的自发和免疫能力模型,以破译遗传基础并探索人类MM的治疗选择。我们对32个犬MM样品进行了整合基因组和转录组分析,这使我们能够鉴定出微环境和结构变体(SV)含量不同的两个分子亚组。与微环境和T细胞反应相关的基因的过表达与具有较低的结构变体含量的肿瘤有关,而与色素沉着相关的途径和癌基因(如TERT)的过表达与高SV负担相关。详细介绍了SV,尤其是那些具有局灶性扩增的SV,在四个犬MM细胞系上进行了全基因组测序。我们表明,焦点放大表征了靶向癌基因的复杂染色体重排,例如MDM2或CDK4,以及犬30犬30上的一个经常放大的区域,其中包含TRPM7,GABPB1,USP8和SPPL2A的基因,是MMMM的候选。我们表明这些基因的拷贝数与它们的表达水平显着相关。最后,我们证明了TRPM7,GABPB1和SPPL2A基因在细胞增殖中起作用。因此,这些可能被视为人类MM的新候选癌基因。我们的发现表明存在可能受益于专用疗法的两个MM分子亚组,例如免疫检查点抑制剂或靶向疗法。这些结果说明了自发MM中狗模型对解密遗传机制的相关性,并有可能筛选人类中罕见和侵略性癌症有效的靶向疗法。。
摘要。药物诱导的hypomagnese- MIA是一种不利影响,具有严重和致命的结果。尽管罕见,但长期使用质子泵抑制剂(PPI)会导致由于肠道吸收受损而引起的低磁性症,这主要归因于通过瞬态潜在的潜在的野星蛋白6(TRPM6)和7(TRPM7)通道的瞬时镁的跨镁镁转移。然而,还报道了由于肠道claudins的下调而减少镁副细胞吸收。PPI诱导的低镁血症可引发其他伴随的电解质扰动,包括低钙病,低钙血症,低磷酸血症和低钠血症。在这里,我们报告了两例与PPI诱导的低磁性血症相关的多种电解质疾病,其临床表现为心脏节律,认知变化和癫痫发作。这些病例说明了需要长期使用PPI的患者中的血清镁水平,尤其是在老年人和患有肠胃不良综合症的患者中或服用循环利尿剂和噻嗪类药物。
b'[2] C. Yan,X。Duanmu,L。Zeng,B。Liu,Z。歌曲,线粒体DNA:分布,突变和消除,细胞,8(2019)。[3] F. Liu,D.E。Sanin,X。Wang,肺癌中的线粒体DNA,实验医学与生物学进展,1038(2017)9-22。[4] J. Zhang,J。[5] P.P.Jia,M。Junaid,Y.B。 MA,F。Ahmad,Y.F。 jia,W.G。 li,D.S。 pei,人类DNA2(HDNA2)作为癌症和其他疾病的潜在靶点的作用:系统评价,DNA修复(AMST),59(2017)9-19。 [6] A. D \ XC3 \ Xadaz-Talavera,C。Montero-Conde,L.J。 Leandro-Garc \ XC3 \ Xada,M。Robledo,Primpol:DNA复制酶的突破和潜在的癌症治疗新靶标,生物分子,12(2022)。 [7] A.O. Giacomelli,X。Yang,R.E。 lintner,J.M. McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Jia,M。Junaid,Y.B。MA,F。Ahmad,Y.F。 jia,W.G。 li,D.S。 pei,人类DNA2(HDNA2)作为癌症和其他疾病的潜在靶点的作用:系统评价,DNA修复(AMST),59(2017)9-19。 [6] A. D \ XC3 \ Xadaz-Talavera,C。Montero-Conde,L.J。 Leandro-Garc \ XC3 \ Xada,M。Robledo,Primpol:DNA复制酶的突破和潜在的癌症治疗新靶标,生物分子,12(2022)。 [7] A.O. Giacomelli,X。Yang,R.E。 lintner,J.M. McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。MA,F。Ahmad,Y.F。jia,W.G。li,D.S。pei,人类DNA2(HDNA2)作为癌症和其他疾病的潜在靶点的作用:系统评价,DNA修复(AMST),59(2017)9-19。[6] A. D \ XC3 \ Xadaz-Talavera,C。Montero-Conde,L.J。Leandro-Garc \ XC3 \ Xada,M。Robledo,Primpol:DNA复制酶的突破和潜在的癌症治疗新靶标,生物分子,12(2022)。[7] A.O.Giacomelli,X。Yang,R.E。 lintner,J.M. McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Giacomelli,X。Yang,R.E。lintner,J.M.McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。McFarland,M。Duby,J。Kim,T.P。D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。D.Y. HowardTakeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Takeda,S.H。ly,E。Kim,H.S。Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Aguirre,J.G。Doench,F。Piccioni,C.W.M。Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Roberts,M。Meyerson,G。Getz,C.M。Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Johannessen,D.E。根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。[8] G.A.Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Fontana,H.L。[9] C.Y.dai,C.C。ng,G.C.C。Hung,I。Kirmes,L.A。Hughes,Y。gahlon,线粒体DNA缺失形成的复制和修复机制,核酸res,48(2020)11244-11258。du,C.A。Brosnan,A。Ahier,A。Hahn,C.M。 Haynes,O。Rackham,A。Filipovska,S。Zuryn,ATFS-1,通过促进转录修复,自然细胞生物学,25(2023)1111-1120来抵消线粒体DNA损伤。 [10] L. Ou,H。Liu,C。Peng,Y. [11] H. Liu,J。Weng,C.L.H。 Huang,A.P。 杰克逊,癌症的电压门控钠通道,生物标志物研究,12(2024)70。 [12] H. Liu,A。Dong,A.M。 Rasteh,P。Wang,J。Weng,乳腺癌中新型T细胞CD8 +标记的鉴定,Scientific Reports,14(2024)19142。 [13] H. Liu,T。Tang,基于MAPK信号途径的胶质瘤亚型,机器学习风险模型和关键集线器蛋白识别,科学报告,13(2023)19055。。 [14] H. Liu,T。Tang,《泛滥成灾与基因集的泛癌遗传分析》,癌症遗传学,278-279(2023)91-103。 [15] H. Liu,T。Tang,《胶质瘤IGFBP的生物信息学研究》,涉及其诊断,预后和治疗预测值,AM J Transl Res,15(2023)2140-2155。 [16] H. Liu,T。Tang,《泛滥成灾基因套件的泛 - 癌遗传分析》,Biorxiv,(2023),2023.2002。 2025.529997。 [17] H. Liu,库糖凋亡在肾脏肾透明细胞癌中的表达和潜在免疫受累,癌症遗传学,274-275(2023)21-25。Brosnan,A。Ahier,A。Hahn,C.M。Haynes,O。Rackham,A。Filipovska,S。Zuryn,ATFS-1,通过促进转录修复,自然细胞生物学,25(2023)1111-1120来抵消线粒体DNA损伤。[10] L. Ou,H。Liu,C。Peng,Y.[11] H. Liu,J。Weng,C.L.H。Huang,A.P。 杰克逊,癌症的电压门控钠通道,生物标志物研究,12(2024)70。 [12] H. Liu,A。Dong,A.M。 Rasteh,P。Wang,J。Weng,乳腺癌中新型T细胞CD8 +标记的鉴定,Scientific Reports,14(2024)19142。 [13] H. Liu,T。Tang,基于MAPK信号途径的胶质瘤亚型,机器学习风险模型和关键集线器蛋白识别,科学报告,13(2023)19055。。 [14] H. Liu,T。Tang,《泛滥成灾与基因集的泛癌遗传分析》,癌症遗传学,278-279(2023)91-103。 [15] H. Liu,T。Tang,《胶质瘤IGFBP的生物信息学研究》,涉及其诊断,预后和治疗预测值,AM J Transl Res,15(2023)2140-2155。 [16] H. Liu,T。Tang,《泛滥成灾基因套件的泛 - 癌遗传分析》,Biorxiv,(2023),2023.2002。 2025.529997。 [17] H. Liu,库糖凋亡在肾脏肾透明细胞癌中的表达和潜在免疫受累,癌症遗传学,274-275(2023)21-25。Huang,A.P。杰克逊,癌症的电压门控钠通道,生物标志物研究,12(2024)70。[12] H. Liu,A。Dong,A.M。 Rasteh,P。Wang,J。Weng,乳腺癌中新型T细胞CD8 +标记的鉴定,Scientific Reports,14(2024)19142。[13] H. Liu,T。Tang,基于MAPK信号途径的胶质瘤亚型,机器学习风险模型和关键集线器蛋白识别,科学报告,13(2023)19055。[14] H. Liu,T。Tang,《泛滥成灾与基因集的泛癌遗传分析》,癌症遗传学,278-279(2023)91-103。[15] H. Liu,T。Tang,《胶质瘤IGFBP的生物信息学研究》,涉及其诊断,预后和治疗预测值,AM J Transl Res,15(2023)2140-2155。[16] H. Liu,T。Tang,《泛滥成灾基因套件的泛 - 癌遗传分析》,Biorxiv,(2023),2023.2002。2025.529997。[17] H. Liu,库糖凋亡在肾脏肾透明细胞癌中的表达和潜在免疫受累,癌症遗传学,274-275(2023)21-25。[18] L. Hengrui,《中药用于癌症治疗中使用的有毒药物的例子》,J Tradit Chin Med,43(2023)209-210。[19] H. Liu,J。Weng,《 Rad51的Pan-Cancer生物信息学分析》,涉及诊断,预后和治疗预测的值,肿瘤学的前沿,12(2022)。[20] H. Liu,J。Weng,胶质瘤中细胞周期蛋白依赖性激酶2(CDK2)的全面生物信息学分析,Gene,(2022)146325。[21] H. Liu,T。Tang,Pan-Cancer的库糖胞化和铜代谢相关的基因集,肿瘤学的边界,12(2022)952290。[22] H. Liu,Y。Li,Cornichon家族AMPA受体辅助蛋白4(CNIH4)在头部和颈部鳞状细胞癌中的潜在作用,癌症生物标志物:疾病标志物A部分(2022)。[23] H. Liu,J.P。Dilger,J。Lin,pan-Cancer-Biodorminicals-Informinical-Informicals Trpm7的文献综述,Pharmacol Ther(2022)108302。[24] H. Liu,cuproptosis Gene Set的Pan-Canter概况,《美国癌症研究杂志》,第12期(2022)4074-4081。[25] Y. Liu,H。Liu,氨基酰基TRNA合成酶复合物的临床能力相互作用多功能蛋白1(AIMP1),用于头颈鳞状细胞癌,癌症生物标志物:疾病标志物A节A节(20222)。[26] Y. Li,H。Liu,Y。Han,在头部和颈部鳞状细胞癌中,Cornichon家族AMPA受体辅助蛋白4(CNIH4)的潜在作用,研究方形(2021)。 '
